Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators
- URL: http://arxiv.org/abs/2005.05082v2
- Date: Sun, 6 Sep 2020 13:15:09 GMT
- Title: Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators
- Authors: Yiming Pan, Bing Wang
- Abstract summary: We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
- Score: 2.3978553352626064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we reported a ubiquitous presence of topological Floquet time
crystal (TFTC) in one-dimensional periodically-driven systems. The rigidity and
realization of spontaneous discrete time-translation symmetry (DTS) breaking in
our model require necessarily coexistence of anomalous topological invariants
(0 modes and $\pi$ modes), instead of the presence of disorders or many-body
localization. We found that in a particular frequency range of the underlying
drive, the anomalous Floquet phase coexistence between zero and pi modes can
produce the period-doubling (2T, two cycles of the drive) that breaks the
spontaneously, leading to the subharmonic response ($\omega/2$, half the drive
frequency). The rigid period-oscillation is topologically-protected against
perturbations due to both non-trivially opening of 0 and $\pi$-gaps in the
quasienergy spectrum, thus, as a result, can be viewed as a specific "Rabi
oscillation" between two Floquet eigenstates with certain quasienergy splitting
$\pi/T$. Our modeling of the time-crystalline 'ground state' can be easily
realized in experimental platforms such as topological photonics and ultracold
fields. Also, our work can bring significant interests to explore topological
phase transition in Floquet systems and to bridge the gap between Floquet
topological insulators and photonics, and period-doubled time crystals.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals [0.46040036610482665]
We propose a new Floquet time crystal model that responds in arbitrary multiples of the driving period.
Transitions between these time crystals with different periods give rise to a novel phase of matter that we call subspace-thermal discrete time crystals.
arXiv Detail & Related papers (2024-09-04T16:19:43Z) - Anomalous Floquet Phases. A resonance phenomena [0.0]
Floquet topological phases emerge when systems are periodically driven out-of-equilibrium.
We show that resonances in Floquet phases can be accurately captured in analytical terms.
We also find a bulk-to-boundary correspondence between the number of edge states in finite systems.
arXiv Detail & Related papers (2023-12-11T19:00:13Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Floquet time crystals in driven spin systems with all-to-all $p$-body
interactions [0.0]
We show the emergence of Floquet time crystal phases in the Floquet dynamics of periodically driven $p$-spin models.
We develop a framework to predict robust subharmonic response in classical area-preserving maps.
Our analysis reveals that the robustness of the time-crystal behavior is reduced as their period increases.
arXiv Detail & Related papers (2022-01-26T00:57:40Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Floquet higher order topological insulator in a periodically driven
bipartite lattice [0.0]
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices.
We predict that this lattice can be realized in experimentally-realistic optical waveguide arrays.
arXiv Detail & Related papers (2020-10-08T10:15:36Z) - Unified theory to characterize Floquet topological phases by quench
dynamics [6.496235214212858]
We propose a unified theory based on quantum quenches to characterize generic $d$-dimensional ($d$D) Floquet topological phases.
For a $d$D phase which is initially static and trivial, we introduce the quench dynamics by suddenly turning on the periodic driving.
This prediction provides a simple and unified characterization, in which one can not only extract the number of conventional and anomalous Floquet boundary modes, but also identify the topologically protected singularities in the phase bands.
arXiv Detail & Related papers (2020-04-29T08:18:22Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.