Hierarchical Attention Learning of Scene Flow in 3D Point Clouds
- URL: http://arxiv.org/abs/2010.05762v1
- Date: Mon, 12 Oct 2020 14:56:08 GMT
- Title: Hierarchical Attention Learning of Scene Flow in 3D Point Clouds
- Authors: Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang
- Abstract summary: This paper studies the problem of scene flow estimation from two consecutive 3D point clouds.
A novel hierarchical neural network with double attention is proposed for learning the correlation of point features in adjacent frames.
Experiments show that the proposed network outperforms the state-of-the-art performance of 3D scene flow estimation.
- Score: 28.59260783047209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene flow represents the 3D motion of every point in the dynamic
environments. Like the optical flow that represents the motion of pixels in 2D
images, 3D motion representation of scene flow benefits many applications, such
as autonomous driving and service robot. This paper studies the problem of
scene flow estimation from two consecutive 3D point clouds. In this paper, a
novel hierarchical neural network with double attention is proposed for
learning the correlation of point features in adjacent frames and refining
scene flow from coarse to fine layer by layer. The proposed network has a new
more-for-less hierarchical architecture. The more-for-less means that the
number of input points is greater than the number of output points for scene
flow estimation, which brings more input information and balances the precision
and resource consumption. In this hierarchical architecture, scene flow of
different levels is generated and supervised respectively. A novel attentive
embedding module is introduced to aggregate the features of adjacent points
using a double attention method in a patch-to-patch manner. The proper layers
for flow embedding and flow supervision are carefully considered in our network
designment. Experiments show that the proposed network outperforms the
state-of-the-art performance of 3D scene flow estimation on the FlyingThings3D
and KITTI Scene Flow 2015 datasets. We also apply the proposed network to
realistic LiDAR odometry task, which is an key problem in autonomous driving.
The experiment results demonstrate that our proposed network can outperform the
ICP-based method and shows the good practical application ability.
Related papers
- Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Let Occ Flow is the first self-supervised work for joint 3D occupancy and occupancy flow prediction using only camera inputs.
Our approach incorporates a novel attention-based temporal fusion module to capture dynamic object dependencies.
Our method extends differentiable rendering to 3D volumetric flow fields.
arXiv Detail & Related papers (2024-07-10T12:20:11Z) - PointFlowHop: Green and Interpretable Scene Flow Estimation from
Consecutive Point Clouds [49.7285297470392]
An efficient 3D scene flow estimation method called PointFlowHop is proposed in this work.
PointFlowHop takes two consecutive point clouds and determines the 3D flow vectors for every point in the first point cloud.
It decomposes the scene flow estimation task into a set of subtasks, including ego-motion compensation, object association and object-wise motion estimation.
arXiv Detail & Related papers (2023-02-27T23:06:01Z) - What Matters for 3D Scene Flow Network [44.02710380584977]
3D scene flow estimation from point clouds is a low-level 3D motion perception task in computer vision.
We propose a novel all-to-all flow embedding layer with backward reliability validation during the initial scene flow estimation.
Our proposed model surpasses all existing methods by at least 38.2% on FlyingThings3D dataset and 24.7% on KITTI Scene Flow dataset for EPE3D metric.
arXiv Detail & Related papers (2022-07-19T09:27:05Z) - Bi-PointFlowNet: Bidirectional Learning for Point Cloud Based Scene Flow
Estimation [3.1869033681682124]
This paper presents a novel scene flow estimation architecture using bidirectional flow embedding layers.
The proposed bidirectional layer learns features along both forward and backward directions, enhancing the estimation performance.
In addition, hierarchical feature extraction and warping improve the performance and reduce computational overhead.
arXiv Detail & Related papers (2022-07-15T15:14:53Z) - Residual 3D Scene Flow Learning with Context-Aware Feature Extraction [11.394559627312743]
We propose a novel context-aware set conv layer to exploit contextual structure information of Euclidean space.
We also propose an explicit residual flow learning structure in the residual flow refinement layer to cope with long-distance movement.
Our method achieves state-of-the-art performance, surpassing all other previous works to the best of our knowledge by at least 25%.
arXiv Detail & Related papers (2021-09-10T06:15:18Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - Weakly Supervised Learning of Rigid 3D Scene Flow [81.37165332656612]
We propose a data-driven scene flow estimation algorithm exploiting the observation that many 3D scenes can be explained by a collection of agents moving as rigid bodies.
We showcase the effectiveness and generalization capacity of our method on four different autonomous driving datasets.
arXiv Detail & Related papers (2021-02-17T18:58:02Z) - PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector
Representation for 3D Object Detection [100.60209139039472]
We propose the PointVoxel Region based Convolution Neural Networks (PVRCNNs) for accurate 3D detection from point clouds.
Our proposed PV-RCNNs significantly outperform previous state-of-the-art 3D detection methods on both the Open dataset and the highly-competitive KITTI benchmark.
arXiv Detail & Related papers (2021-01-31T14:51:49Z) - Adversarial Self-Supervised Scene Flow Estimation [15.278302535191866]
This work proposes a metric learning approach for self-supervised scene flow estimation.
We outline a benchmark for self-supervised scene flow estimation: the Scene Flow Sandbox.
arXiv Detail & Related papers (2020-11-01T16:37:37Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.