Violation of Bell quantum probability inequalities with classical fields
- URL: http://arxiv.org/abs/2010.05813v1
- Date: Mon, 12 Oct 2020 16:08:13 GMT
- Title: Violation of Bell quantum probability inequalities with classical fields
- Authors: Laura Ares and Alfredo Luis
- Abstract summary: We present a violation of Bell inequalities for classical fields in terms of probabilities.
We find violation for both, entangled and separable field states.
We develop a new Bell-like criterion which is satisfied by factorized states and it is not by the entangled state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Violations of Bell inequalities in classical optics have been demonstrated in
terms of field mean intensities and correlations, however, the quantum meaning
of violations point to statistics and probabilities. We present a violation of
Bell inequalities for classical fields in terms of probabilities, where we
convert classical-field intensities into probabilities via the standard
photon-counting equation. We find violation for both, entangled and separable
field states. We conclude that any obtained quantum effect might be fully
ascribed to the quantum nature of the detector rather than the field itself.
Finally, we develop a new Bell-like criterion which is satisfied by factorized
states and it is not by the entangled state.
Related papers
- Optimizing Fictitious States for Bell Inequality Violation in Bipartite Qubit Systems [5.151248813215795]
We show that if Bell inequality violation is observed with a fictitious state, then it implies the same for a quantum sub-state.
We further show analytically that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states.
arXiv Detail & Related papers (2023-11-15T18:05:44Z) - Insights into Quantum Contextuality and Bell Nonclassicality: A Study on
Random Pure Two-Qubit Systems [0.0]
We explore the relationship between Kochen-Specker quantum contextuality and Bell-nonclassicality for ensembles of two-qubit pure states.
We present a comparative analysis showing that the violation of a noncontextuality inequality on a given quantum state reverberates on the Bell-nonclassicality of the considered state.
arXiv Detail & Related papers (2023-10-13T12:14:11Z) - Scalable Bell inequalities for graph states of arbitrary prime local
dimension and self-testing [0.0]
Bell nonlocality -- the existence of quantum correlations that cannot be explained by classical means -- is one of the most striking features of quantum mechanics.
This work provides a general construction of Bell inequalities maximally violated by graph states of any prime local dimension.
We analytically determine their maximal quantum violation, a number of high relevance for device-independent applications of Bell inequalities.
arXiv Detail & Related papers (2022-12-14T09:46:27Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Class of Bell-Clauser-Horne inequalities for testing quantum nonlocality [11.367526341820643]
We propose methods for the rearrangement and linear inequality to prove a large variety of Bell-CH inequalities.
We also derive a set of Bell-CH inequalities by using these methods which can be violated in some quantum entangled states.
arXiv Detail & Related papers (2021-01-07T08:25:21Z) - Violation of Bell inequalities by stochastic simulations of Gaussian
States based on their positive Wigner representation [0.0]
We study the use of an everywhere positive Wigner function as a probability density to perform simulations in quantum optics.
Because of the difference between symmetrically and normally ordered operators, some trajectories in simulations can imply negative intensities, despite a positive mean.
For the case of the Clauser-Horn Bell inequality, the influence of the quantum efficiency of the detectors is studied.
arXiv Detail & Related papers (2020-06-28T08:12:27Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.