Entanglement generation in quantum thermal machines
- URL: http://arxiv.org/abs/2010.05885v3
- Date: Sat, 5 Dec 2020 20:52:36 GMT
- Title: Entanglement generation in quantum thermal machines
- Authors: Milton Aguilar, Nahuel Freitas, Juan Pablo Paz
- Abstract summary: We show that in a linear quantum machine, entanglement between reservoir modes is unavoidably generated.
We show that this entanglement can persist for temperatures that can be significantly higher than the lowest achievable ones with sideband resolved cooling methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that in a linear quantum machine, a driven quantum system that
evolves while coupled with thermal reservoirs, entanglement between the
reservoir modes is unavoidably generated. This phenomenon, which occurs at
sufficiently low temperatures and is at the heart of the third law of
thermodynamics, is a consequence of a simple process: the transformation of the
energy of the driving field into pairs of excitations in the reservoirs. For a
driving with frequency $\omega_{d}$ we show entanglement exists between
environmental modes whose frequencies satisfy the condition $\omega_{i} +
\omega_{j}= \omega_{d}$. We show that this entanglement can persist for
temperatures that can be significantly higher than the lowest achievable ones
with sideband resolved cooling methods.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum refrigeration powered by noise in a superconducting circuit [0.0]
We demonstrate a novel quantum thermal machine that leverages noise-assisted quantum transport to fuel a cooling engine in steady state.
The device exploits symmetry-selective couplings between a superconducting artificial molecule and two microwave waveguides.
By varying the relative temperatures of the reservoirs, and measuring heat currents with a resolution below 1 aW, we demonstrate that the device can be operated as a quantum heat engine, thermal accelerator, and refrigerator.
arXiv Detail & Related papers (2024-03-05T23:48:28Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Open quantum dynamics theory for a complex subenvironment system with a
quantum thermostat: Application to a spin heat bath [0.0]
Complex environments, such as molecular matrices and biological material, play a fundamental role in many important dynamic processes in condensed phases.
We describe the dynamics of a two-level system that interacts with a subenvironment consisting of a one-dimensional $XXZ$ spin chain.
The hierarchical Schr"odinger equations of motion are employed to describe the quantum thermostat, allowing time-irreversible simulations of the dynamics at arbitrary temperature.
arXiv Detail & Related papers (2021-11-26T00:06:17Z) - Nonadiabatic evolution and thermodynamics of a time-dependent open
quantum system [4.891858328401626]
We investigate the dynamic evolution and thermodynamic process of a driven quantum system immersed in a finite-temperature heat bath.
A Born-Markovian quantum master equation is formally derived for the time-dependent system with discrete energy levels.
arXiv Detail & Related papers (2021-04-30T18:38:47Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Lieb's Theorem and Maximum Entropy Condensates [0.0]
In a broad class of lattices Floquet heating can actually be an advantageous effect.
We show that the maximum entropy steady states which form upon driving the ground state of the Hubbard model on unbalanced bi-partite lattices possess uniform off-diagonal long-range order.
This creation of a hot' condensate can occur on textitany driven unbalanced lattice and provides an understanding of how heating can, at the macroscopic level, expose and alter the order in a quantum system.
arXiv Detail & Related papers (2021-03-08T11:51:08Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Random multipolar driving: tunably slow heating through spectral
engineering [0.0]
We study heating in quantum many-body systems driven by $n-$multipolar sequences.
A simple theory based on Fermi's golden exponent accounts for this behaviour.
Despite the absence of periodicity in the drive, the prethermal regime can host versatile non-equilibrium phases.
arXiv Detail & Related papers (2020-07-14T18:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.