Fast Thermalization from the Eigenstate Thermalization Hypothesis
- URL: http://arxiv.org/abs/2112.07646v3
- Date: Wed, 29 Mar 2023 04:52:36 GMT
- Title: Fast Thermalization from the Eigenstate Thermalization Hypothesis
- Authors: Chi-Fang Chen and Fernando G.S.L. Brand\~ao
- Abstract summary: Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
- Score: 69.68937033275746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Eigenstate Thermalization Hypothesis (ETH) has played a major role in
understanding thermodynamic phenomena in closed quantum systems. However, its
connection to the timescale of thermalization for open system dynamics has
remained elusive. This paper establishes a rigorous link between ETH and fast
thermalization to the global Gibbs state. Specifically, we demonstrate fast
thermalization for a system coupled weakly to a bath of quasi-free Fermions
that we refresh periodically. To describe the joint evolution, we derive a
finite-time version of Davies' generator with explicit error bounds and
resource estimates. Our approach exploits a critical feature of ETH: operators
in the energy basis can be modeled by independent random matrices in a
near-diagonal band. This gives quantum expanders at nearby eigenstates of the
Hamiltonian and reduces the problem to a one-dimensional classical random walk
on the energy eigenstates. Our results explain finite-time thermalization in
chaotic open quantum systems.
Related papers
- Deep thermalization in constrained quantum systems [0.0]
"Deep thermalization" has recently been introduced to characterize moments of an ensemble of pure states.
We study deep thermalization in systems with kinetic constraints, such as the quantum East and the PXP models.
We show that such behavior is caused by an interplay of time-reversal symmetry and an operator that anticommutes with the Hamiltonian.
arXiv Detail & Related papers (2023-07-07T18:00:01Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach [0.0]
Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central focus of quantum thermodynamics and mesoscopic physics.
The mesoscopic leads approach was recently generalised to steady state thermal machines and has the ability to replicate Landauer B"uttiker theory in the non-interacting limit.
arXiv Detail & Related papers (2022-06-02T15:15:59Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Nonadiabatic evolution and thermodynamics of a time-dependent open
quantum system [4.891858328401626]
We investigate the dynamic evolution and thermodynamic process of a driven quantum system immersed in a finite-temperature heat bath.
A Born-Markovian quantum master equation is formally derived for the time-dependent system with discrete energy levels.
arXiv Detail & Related papers (2021-04-30T18:38:47Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Tensor-network approach to thermalization in open quantum many-body
systems [0.0]
We investigate the relaxation dynamics of open non-integrable quantum many-body systems in the thermodynamic limit.
We numerically show that when an initial state of the LQME is a thermal Gibbs state, a time evolved state is always indistinguishable from a Gibbs state with a time-dependent effective temperature.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.