Modeling 3D Infant Kinetics Using Adaptive Graph Convolutional Networks
- URL: http://arxiv.org/abs/2402.14400v2
- Date: Thu, 20 Jun 2024 06:34:06 GMT
- Title: Modeling 3D Infant Kinetics Using Adaptive Graph Convolutional Networks
- Authors: Daniel Holmberg, Manu Airaksinen, Viviana Marchi, Andrea Guzzetta, Anna Kivi, Leena Haataja, Sampsa Vanhatalo, Teemu Roos,
- Abstract summary: Spontaneous motor activity, orkinetics', is shown to provide a powerful surrogate measure of upcoming neurodevelopment.
Here, we follow an alternative approach, predicting infants' maturation based on data-driven evaluation of individual motor patterns.
- Score: 2.2279946664123664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable methods for the neurodevelopmental assessment of infants are essential for early detection of medical issues that may need prompt interventions. Spontaneous motor activity, or 'kinetics', is shown to provide a powerful surrogate measure of upcoming neurodevelopment. However, its assessment is by and large qualitative and subjective, focusing on visually identified, age-specific gestures. Here, we follow an alternative approach, predicting infants' neurodevelopmental maturation based on data-driven evaluation of individual motor patterns. We utilize 3D video recordings of infants processed with pose-estimation to extract spatio-temporal series of anatomical landmarks, and apply adaptive graph convolutional networks to predict the actual age. We show that our data-driven approach achieves improvement over traditional machine learning baselines based on manually engineered features.
Related papers
- Neural Lineage [56.34149480207817]
We introduce a novel task known as neural lineage detection, aiming at discovering lineage relationships between parent and child models.
For practical convenience, we introduce a learning-free approach, which integrates an approximation of the finetuning process into the neural network representation similarity metrics.
For the pursuit of accuracy, we introduce a learning-based lineage detector comprising encoders and a transformer detector.
arXiv Detail & Related papers (2024-06-17T01:11:53Z) - Challenges in Video-Based Infant Action Recognition: A Critical
Examination of the State of the Art [9.327466428403916]
We introduce a groundbreaking dataset called InfActPrimitive'', encompassing five significant infant milestone action categories.
We conduct an extensive comparative analysis employing cutting-edge skeleton-based action recognition models.
Our findings reveal that, although the PoseC3D model achieves the highest accuracy at approximately 71%, the remaining models struggle to accurately capture the dynamics of infant actions.
arXiv Detail & Related papers (2023-11-21T02:36:47Z) - Dynamic Gaussian Splatting from Markerless Motion Capture can
Reconstruct Infants Movements [2.44755919161855]
This work paves the way for advanced movement analysis tools that can be applied to diverse clinical populations.
We explored the application of dynamic Gaussian splatting to sparse markerless motion capture data.
Our results demonstrate the potential of this method in rendering novel views of scenes and tracking infant movements.
arXiv Detail & Related papers (2023-10-30T11:09:39Z) - Towards early prediction of neurodevelopmental disorders: Computational
model for Face Touch and Self-adaptors in Infants [0.0]
evaluating a baby's movements is key to understanding possible risks of developmental disorders in their growth.
Previous research in psychology has shown that measuring specific movements or gestures such as face touches in babies is essential to analyse how babies understand themselves and their context.
This research proposes the first automatic approach that detects face touches from video recordings by tracking infants' movements and gestures.
arXiv Detail & Related papers (2023-01-07T18:08:43Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - Predi\c{c}\~ao da Idade Cerebral a partir de Imagens de Resson\^ancia
Magn\'etica utilizando Redes Neurais Convolucionais [57.52103125083341]
Deep learning techniques for brain age prediction from magnetic resonance images are investigated.
The identification of biomarkers is useful for detecting an early-stage neurodegenerative process, as well as for predicting age-related or non-age-related cognitive decline.
The best result was obtained by the 2D model, which achieved a mean absolute error of 3.83 years.
arXiv Detail & Related papers (2021-12-23T14:51:45Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Towards human-level performance on automatic pose estimation of infant
spontaneous movements [2.7086496937827005]
Four types of convolutional neural networks were trained and evaluated on a novel infant pose dataset.
The best performing neural network had a similar localization error to the inter-rater spread of human expert annotations.
Overall, the results of our study show that pose estimation of infant spontaneous movements has a great potential to support research initiatives on early detection of developmental disorders in children with perinatal brain injuries.
arXiv Detail & Related papers (2020-10-12T18:17:47Z) - Preterm infants' pose estimation with spatio-temporal features [7.054093620465401]
This paper introduces the use of preterm-temporal features for limb detection and tracking.
It is the first study to use depth videos acquired in the actual clinical practice for limb-pose estimation.
arXiv Detail & Related papers (2020-05-08T09:51:22Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.