Information Processing Capacity of Spin-Based Quantum Reservoir
Computing Systems
- URL: http://arxiv.org/abs/2010.06369v1
- Date: Tue, 13 Oct 2020 13:26:34 GMT
- Title: Information Processing Capacity of Spin-Based Quantum Reservoir
Computing Systems
- Authors: R. Mart\'inez-Pe\~na, J. Nokkala, G. L. Giorgi, R. Zambrini, M. C.
Soriano
- Abstract summary: Quantum reservoir computing (QRC) with Ising spin networks was introduced as a quantum version of classical reservoir computing.
We characterize the performance of the spin-based QRC model with the Information Processing Capacity (IPC)
This work establishes a clear picture of the computational capabilities of a quantum network of spins for reservoir computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamical behaviour of complex quantum systems can be harnessed for
information processing. With this aim, quantum reservoir computing (QRC) with
Ising spin networks was recently introduced as a quantum version of classical
reservoir computing. In turn, reservoir computing is a neuro-inspired machine
learning technique that consists in exploiting dynamical systems to solve
nonlinear and temporal tasks. We characterize the performance of the spin-based
QRC model with the Information Processing Capacity (IPC), which allows to
quantify the computational capabilities of a dynamical system beyond specific
tasks. The influence on the IPC of the input injection frequency, time
multiplexing, and different measured observables encompassing local spin
measurements as well as correlations, is addressed. We find conditions for an
optimum input driving and provide different alternatives for the choice of the
output variables used for the readout. This work establishes a clear picture of
the computational capabilities of a quantum network of spins for reservoir
computing. Our results pave the way to future research on QRC both from the
theoretical and experimental points of view.
Related papers
- Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Classical and quantum reservoir computing: development and applications
in machine learning [0.0]
Reservoir computing is a novel machine learning algorithm that uses a nonlinear dynamical system to learn complex temporal patterns from data.
The research demonstrates the algorithm's robustness and adaptability across very different domains, including agricultural time series forecasting.
The last contribution of this thesis focuses on optimizing algorithm designs for quantum reservoir computing.
arXiv Detail & Related papers (2023-10-11T13:01:05Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - Configured Quantum Reservoir Computing for Multi-Task Machine Learning [24.698475208639586]
We explore the dynamics of programmable NISQ devices for quantum reservoir computing.
A single configured quantum reservoir can simultaneously learn multiple tasks.
We highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance.
arXiv Detail & Related papers (2023-03-30T18:00:02Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Natural quantum reservoir computing for temporal information processing [4.785845498722406]
Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics.
This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits.
arXiv Detail & Related papers (2021-07-13T01:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.