Quantum reservoir computing on random regular graphs
- URL: http://arxiv.org/abs/2409.03665v1
- Date: Thu, 5 Sep 2024 16:18:03 GMT
- Title: Quantum reservoir computing on random regular graphs
- Authors: Moein N. Ivaki, Achilleas Lazarides, Tapio Ala-Nissila,
- Abstract summary: Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines the inherent dynamics of input-driven many-body quantum systems with classical learning techniques for nonlinear temporal data processing. Optimizing the QRC process and computing device is a complex task due to the dependence of many-body quantum systems to various factors. To explore this, we introduce a strongly interacting spin model on random regular graphs as the quantum component and investigate the interplay between static disorder, interactions, and graph connectivity, revealing their critical impact on quantum memory capacity and learnability accuracy. We tackle linear quantum and nonlinear classical tasks, and identify optimal learning and memory regimes through studying information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian. In particular, we uncover the role of previously overlooked network connectivity and demonstrate how the presence of quantum correlations can significantly enhance the learning performance. Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning.
We present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels.
arXiv Detail & Related papers (2023-09-19T08:59:46Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Expressibility and trainability of parameterized analog quantum systems
for machine learning applications [0.0]
We show how interplay between external driving and disorder in the system dictates the trainability and expressibility of interacting quantum systems.
Our work shows the fundamental connection between quantum many-body physics and its application in machine learning.
arXiv Detail & Related papers (2020-05-22T14:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.