Generic aspects of the resource theory of quantum coherence
- URL: http://arxiv.org/abs/2010.06533v3
- Date: Thu, 1 Jul 2021 06:18:27 GMT
- Title: Generic aspects of the resource theory of quantum coherence
- Authors: Fabio Deelan Cunden, Paolo Facchi, Giuseppe Florio, Giovanni Gramegna
- Abstract summary: We prove that if two $n$-dimensional pure states are chosen independently according to the natural uniform distribution, then the probability that they are comparable as $nrightarrowinfty$.
We also study the maximal success probability of incoherent conversions and find an explicit formula for its large-$n$ distribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The class of incoherent operations induces a pre-order on the set of quantum
pure states, defined by the possibility of converting one state into the other
by transformations within the class. We prove that if two $n$-dimensional pure
states are chosen independently according to the natural uniform distribution,
then the probability that they are comparable vanishes as $n\rightarrow\infty$.
We also study the maximal success probability of incoherent conversions and
find an explicit formula for its large-$n$ asymptotic distribution. Our
analysis is based on the observation that the extreme values (largest and
smallest components) of a random point uniformly sampled from the unit simplex
are distributed asymptotically as certain explicit homogeneous Markov chains.
Related papers
- Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Universal distributions of overlaps from unitary dynamics in generic quantum many-body systems [0.0]
We study the preparation of a quantum state using a circuit of depth $t$ from a factorized state of $N$ sites.
We argue that in the appropriate scaling limit of large $t$ and $N$, the overlap between states evolved under generic many-body chaotic dynamics.
arXiv Detail & Related papers (2024-04-15T18:01:13Z) - Average entanglement entropy of midspectrum eigenstates of
quantum-chaotic interacting Hamiltonians [0.0]
We show that the magnitude of the negative $O(1)$ correction is only slightly greater than the one predicted for random pure states.
We derive a simple expression that describes the numerically observed $nu$ dependence of the $O(1)$ deviation from the prediction for random pure states.
arXiv Detail & Related papers (2023-03-23T18:00:02Z) - Symplectic tomographic probability distribution of crystallized
Schr\"odinger cat states [1.2891210250935143]
We study a superposition of generic Gaussian states associated to symmetries of a regular polygon of n sides.
We obtain the Wigner functions and tomographic probability distributions determining the density matrices of the states.
arXiv Detail & Related papers (2022-03-15T11:03:47Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Attainability and lower semi-continuity of the relative entropy of
entanglement, and variations on the theme [8.37609145576126]
The relative entropy of entanglement $E_Rite is defined as the distance of a multi-part quantum entanglement from the set of separable states as measured by the quantum relative entropy.
We show that this state is always achieved, i.e. any state admits a closest separable state, even in dimensions; also, $E_Rite is everywhere lower semi-negative $lambda_$quasi-probability distribution.
arXiv Detail & Related papers (2021-05-17T18:03:02Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Entanglement distribution in the Quantum Symmetric Simple Exclusion
Process [0.0]
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process.
By means of a Coulomb gas approach from Random Matrix Theory, we compute analytically the large-deviation function of the entropy in the thermodynamic limit.
arXiv Detail & Related papers (2021-02-09T10:25:04Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
An empirical model is said contextual if its distributions cannot be obtained marginalizing a joint distribution over X.
We present a different and classical source of contextual empirical models: the interaction among many processes.
The statistical behavior of the network in the long run makes the empirical model generically contextual and even strongly contextual.
arXiv Detail & Related papers (2020-06-22T16:57:52Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
We introduce a broad family of probability metrics, coined as Generalized Sliced Probability Metrics (GSPMs)
GSPMs are rooted in the generalized Radon transform and come with a unique geometric interpretation.
We consider GSPM-based gradient flows for generative modeling applications and show that under mild assumptions, the gradient flow converges to the global optimum.
arXiv Detail & Related papers (2020-02-28T04:18:00Z) - Finite Block Length Analysis on Quantum Coherence Distillation and
Incoherent Randomness Extraction [64.04327674866464]
We introduce a variant of randomness extraction framework where free incoherent operations are allowed before the incoherent measurement.
We show that the maximum number of random bits extractable from a given quantum state is precisely equal to the maximum number of coherent bits that can be distilled from the same state.
Remarkably, the incoherent operation classes all admit the same second order expansions.
arXiv Detail & Related papers (2020-02-27T09:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.