Entanglement distribution in the Quantum Symmetric Simple Exclusion
Process
- URL: http://arxiv.org/abs/2102.04745v2
- Date: Mon, 26 Jul 2021 13:04:54 GMT
- Title: Entanglement distribution in the Quantum Symmetric Simple Exclusion
Process
- Authors: Denis Bernard, Lorenzo Piroli
- Abstract summary: We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process.
By means of a Coulomb gas approach from Random Matrix Theory, we compute analytically the large-deviation function of the entropy in the thermodynamic limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the probability distribution of entanglement in the Quantum
Symmetric Simple Exclusion Process, a model of fermions hopping with random
Brownian amplitudes between neighboring sites. We consider a protocol where the
system is initialized in a pure product state of $M$ particles, and focus on
the late-time distribution of R\'enyi-$q$ entropies for a subsystem of size
$\ell$. By means of a Coulomb gas approach from Random Matrix Theory, we
compute analytically the large-deviation function of the entropy in the
thermodynamic limit. For $q>1$, we show that, depending on the value of the
ratio $\ell/M$, the entropy distribution displays either two or three distinct
regimes, ranging from low- to high-entanglement. These are connected by points
where the probability density features singularities in its third derivative,
which can be understood in terms of a transition in the corresponding charge
density of the Coulomb gas. Our analytic results are supported by numerical
Monte Carlo simulations.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - An Area Law for Entanglement Entropy in Particle Scattering [0.0]
We compute the entanglement entropy in 2-to-2 scattering of particles in a general setting.
Since $sigma_textel$ is generally believed, and observed experimentally, to grow with the collision energy $sqrts$ in the high energy regime, the result suggests a "second law" of entanglement entropy for high energy collisions.
arXiv Detail & Related papers (2024-05-13T18:00:00Z) - Symmetry shapes thermodynamics of macroscopic quantum systems [0.0]
We show that the entropy of a system can be described in terms of group-theoretical quantities.
We apply our technique to generic $N$ identical interacting $d$-level quantum systems.
arXiv Detail & Related papers (2024-02-06T18:13:18Z) - Average entanglement entropy of midspectrum eigenstates of
quantum-chaotic interacting Hamiltonians [0.0]
We show that the magnitude of the negative $O(1)$ correction is only slightly greater than the one predicted for random pure states.
We derive a simple expression that describes the numerically observed $nu$ dependence of the $O(1)$ deviation from the prediction for random pure states.
arXiv Detail & Related papers (2023-03-23T18:00:02Z) - Symmetry-resolved entanglement in critical non-Hermitian systems [0.0]
We study the symmetry-resolved entanglement in the ground state of the non-Hermitian Su-Schrieffer-Heeger chain at the critical point.
By combining bosonization techniques in the field theory and exact lattice numerical calculations, we analytically derive the charged moments of $rho_A$ and $|rho_A|$.
arXiv Detail & Related papers (2023-03-09T13:14:26Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Page curves and typical entanglement in linear optics [0.0]
We study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary.
We prove various results on the typicality of entanglement as measured by the R'enyi-2 entropy.
Our main make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.