論文の概要: A Graph Representation of Semi-structured Data for Web Question
Answering
- arxiv url: http://arxiv.org/abs/2010.06801v1
- Date: Wed, 14 Oct 2020 04:01:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 12:25:37.792913
- Title: A Graph Representation of Semi-structured Data for Web Question
Answering
- Title(参考訳): Web質問応答のための半構造化データのグラフ表現
- Authors: Xingyao Zhang, Linjun Shou, Jian Pei, Ming Gong, Lijie Wen, Daxin
Jiang
- Abstract要約: 本稿では、半構造化データとそれらの関係の構成要素の体系的分類に基づいて、Webテーブルとリストのグラフ表現を提案する。
本手法は,最先端のベースラインに対してF1スコアを3.90ポイント向上させる。
- 参考スコア(独自算出の注目度): 96.46484690047491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The abundant semi-structured data on the Web, such as HTML-based tables and
lists, provide commercial search engines a rich information source for question
answering (QA). Different from plain text passages in Web documents, Web tables
and lists have inherent structures, which carry semantic correlations among
various elements in tables and lists. Many existing studies treat tables and
lists as flat documents with pieces of text and do not make good use of
semantic information hidden in structures. In this paper, we propose a novel
graph representation of Web tables and lists based on a systematic
categorization of the components in semi-structured data as well as their
relations. We also develop pre-training and reasoning techniques on the graph
model for the QA task. Extensive experiments on several real datasets collected
from a commercial engine verify the effectiveness of our approach. Our method
improves F1 score by 3.90 points over the state-of-the-art baselines.
- Abstract(参考訳): HTMLベースのテーブルやリストなどのWeb上の豊富な半構造化データにより、商用検索エンジンは質問応答(QA)のための豊富な情報ソースを提供する。
webドキュメントの平文節とは異なり、webテーブルとリストには固有の構造があり、テーブルとリストのさまざまな要素間の意味的相関がある。
既存の研究の多くは、表やリストを平らな文書としてテキストで扱い、構造に隠された意味情報をうまく利用していない。
本稿では, 半構造化データ中の成分の体系的分類とそれらの関係に基づく, ウェブ表とリストの新しいグラフ表現を提案する。
また,QAタスクのグラフモデル上での事前学習および推論手法も開発する。
商用エンジンから収集した実データに対する広範囲な実験により,本手法の有効性が検証された。
本手法は,最先端のベースラインに対してF1スコアを3.90ポイント向上させる。
関連論文リスト
- Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
視覚的にリッチなテーブルテキスト文書に答えるTAT-DQAを提案する。
具体的には、離散推論機能を強化した新しいDoc2SoarGraphフレームワークを提案する。
我々は,TAT-DQAデータセットに関する広範な実験を行い,提案したフレームワークは,テストセット上でのエクサクティマッチ(EM)とF1スコアでそれぞれ17.73%,F1スコアで16.91%の最高のベースラインモデルを上回る結果を得た。
論文 参考訳(メタデータ) (2023-05-03T07:30:32Z) - Data augmentation on graphs for table type classification [1.1859913430860336]
グラフニューラルネットワークを用いてテーブルの分類を行い、使用中のメッセージパッシングアルゴリズムのテーブル構造を利用する。
我々は,グラフベースの表表現に適したデータ拡張手法を提案することで,有望な予備結果を実現する。
論文 参考訳(メタデータ) (2022-08-23T21:54:46Z) - DiSCoMaT: Distantly Supervised Composition Extraction from Tables in
Materials Science Articles [25.907266860321727]
材料科学論文の表から素材の組成を抽出する新しいNLPタスクを定義する。
遠隔操作型テーブル4,408、手動で注釈付けされた開発およびテストテーブル1,475からなるトレーニングデータセットをリリースする。
DisCOMATは最近のテーブル処理アーキテクチャよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-07-03T17:11:17Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
テーブル検索のタスクに焦点をあてて、"テーブル固有のモデル設計はテーブル検索に必要か?
自然質問データセット (NQ-table) の表に基づく分析の結果, 70%以上の症例では構造が無視できる役割を担っていることがわかった。
次に、テーブル構造、すなわち補助列/カラム埋め込み、ハードアテンションマスク、ソフトリレーションに基づくアテンションバイアスを明示的にエンコードする3つのモジュールを実験する。
いずれも大きな改善は得られず、テーブル固有のモデル設計がテーブル検索に不要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:35:23Z) - TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition [76.06530816349763]
本稿では,表構造認識のためのエンドツーエンドのトレーニング可能な表グラフ再構成ネットワーク(TGRNet)を提案する。
具体的には,異なる細胞の空間的位置と論理的位置を共同で予測するために,細胞検出枝と細胞論理的位置分岐の2つの主枝を有する。
論文 参考訳(メタデータ) (2021-06-20T01:57:05Z) - Retrieving Complex Tables with Multi-Granular Graph Representation
Learning [20.72341939868327]
自然言語テーブル検索の課題は,自然言語クエリに基づいて意味的に関連するテーブルを検索することである。
既存の学習システムは、テーブルがデータフレームとして構成されているという仮定に基づいて、テーブルをプレーンテキストとして扱う。
多粒グラフ表現学習を用いた一般化可能なNLTRフレームワークであるグラフベーステーブル検索(GTR)を提案する。
論文 参考訳(メタデータ) (2021-05-04T20:19:03Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
テキストリッチネットワークから学習することで,最小限に教師付き分類を行う新しいフレームワークを提案する。
具体的には、テキスト理解のためのテキスト解析モジュールと、クラス差別的でスケーラブルなネットワーク学習のためのネットワーク学習モジュールの2つのモジュールを共同でトレーニングします。
実験の結果,1つのカテゴリに3つのシード文書しか与えられず,その精度は約92%であった。
論文 参考訳(メタデータ) (2021-02-23T04:14:34Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z) - Identifying Table Structure in Documents using Conditional Generative
Adversarial Networks [0.0]
多くの産業や学術研究において、情報は主に構造化されていない文書の形で伝達される。
本稿では,まず,テーブルイメージを標準化されたスケルトンテーブル形式にマッピングするために,条件付き生成逆数ネットワークを用いたトップダウンアプローチを提案する。
次に、xy-cutプロジェクションと遺伝的アルゴリズムを用いた潜在テーブル構造を導出する。
論文 参考訳(メタデータ) (2020-01-13T20:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。