Neural Mixture Distributional Regression
- URL: http://arxiv.org/abs/2010.06889v1
- Date: Wed, 14 Oct 2020 09:00:16 GMT
- Title: Neural Mixture Distributional Regression
- Authors: David R\"ugamer, Florian Pfisterer and Bernd Bischl
- Abstract summary: We present a holistic framework to estimate finite mixtures of distributional regressions defined by flexible additive predictors.
Our framework is able to handle a large number of mixtures of potentially different distributions in high-dimensional settings.
- Score: 0.9023847175654603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present neural mixture distributional regression (NMDR), a holistic
framework to estimate complex finite mixtures of distributional regressions
defined by flexible additive predictors. Our framework is able to handle a
large number of mixtures of potentially different distributions in
high-dimensional settings, allows for efficient and scalable optimization and
can be applied to recent concepts that combine structured regression models
with deep neural networks. While many existing approaches for mixture models
address challenges in optimization of such and provide results for convergence
under specific model assumptions, our approach is assumption-free and instead
makes use of optimizers well-established in deep learning. Through extensive
numerical experiments and a high-dimensional deep learning application we
provide evidence that the proposed approach is competitive to existing
approaches and works well in more complex scenarios.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
We explore the partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems.
We propose a general framework focusing on adaptive dimensionality reduction.
The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments.
arXiv Detail & Related papers (2022-10-06T06:01:36Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
A model based evaluation of concrete compressive strength is of high value, both for the purpose of strength prediction and the mixture optimization.
We take a further step towards improving the accuracy of the prediction model via the weighted combination of multiple regression methods.
A proposed (GA)-based mixture optimization is proposed, building on the obtained multi-regression model.
arXiv Detail & Related papers (2021-06-13T16:10:32Z) - Implicit MLE: Backpropagating Through Discrete Exponential Family
Distributions [24.389388509299543]
Implicit Maximum Likelihood Estimation is a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components.
We show that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.
arXiv Detail & Related papers (2021-06-03T12:42:21Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Towards Multimodal Response Generation with Exemplar Augmentation and
Curriculum Optimization [73.45742420178196]
We propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization.
Our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.
arXiv Detail & Related papers (2020-04-26T16:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.