Towards Multimodal Response Generation with Exemplar Augmentation and
Curriculum Optimization
- URL: http://arxiv.org/abs/2004.12429v1
- Date: Sun, 26 Apr 2020 16:29:06 GMT
- Title: Towards Multimodal Response Generation with Exemplar Augmentation and
Curriculum Optimization
- Authors: Zeyang Lei, Zekang Li, Jinchao Zhang, Fandong Meng, Yang Feng, Yujiu
Yang, Cheng Niu, Jie Zhou
- Abstract summary: We propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization.
Our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.
- Score: 73.45742420178196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, variational auto-encoder (VAE) based approaches have made
impressive progress on improving the diversity of generated responses. However,
these methods usually suffer the cost of decreased relevance accompanied by
diversity improvements. In this paper, we propose a novel multimodal response
generation framework with exemplar augmentation and curriculum optimization to
enhance relevance and diversity of generated responses. First, unlike existing
VAE-based models that usually approximate a simple Gaussian posterior
distribution, we present a Gaussian mixture posterior distribution (i.e,
multimodal) to further boost response diversity, which helps capture complex
semantics of responses. Then, to ensure that relevance does not decrease while
diversity increases, we fully exploit similar examples (exemplars) retrieved
from the training data into posterior distribution modeling to augment response
relevance. Furthermore, to facilitate the convergence of Gaussian mixture prior
and posterior distributions, we devise a curriculum optimization strategy to
progressively train the model under multiple training criteria from easy to
hard. Experimental results on widely used SwitchBoard and DailyDialog datasets
demonstrate that our model achieves significant improvements compared to strong
baselines in terms of diversity and relevance.
Related papers
- Preference Optimization with Multi-Sample Comparisons [53.02717574375549]
We introduce a novel approach that extends post-training to include multi-sample comparisons.
These approaches fail to capture critical characteristics such as generative diversity and bias.
We demonstrate that multi-sample comparison is more effective in optimizing collective characteristics than single-sample comparison.
arXiv Detail & Related papers (2024-10-16T00:59:19Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
We propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem.
In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach.
Finally, we propose Multimodal Interaction module to address the unalignment nature of multimodal data.
arXiv Detail & Related papers (2022-11-07T13:05:56Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Neural Mixture Distributional Regression [0.9023847175654603]
We present a holistic framework to estimate finite mixtures of distributional regressions defined by flexible additive predictors.
Our framework is able to handle a large number of mixtures of potentially different distributions in high-dimensional settings.
arXiv Detail & Related papers (2020-10-14T09:00:16Z) - Learning more expressive joint distributions in multimodal variational
methods [0.17188280334580194]
We introduce a method that improves the representational capacity of multimodal variational methods using normalizing flows.
We demonstrate that the model improves on state-of-the-art multimodal methods based on variational inference on various computer vision tasks.
We also show that learning more powerful approximate joint distributions improves the quality of the generated samples.
arXiv Detail & Related papers (2020-09-08T11:45:27Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.