Medical Code Assignment with Gated Convolution and Note-Code Interaction
- URL: http://arxiv.org/abs/2010.06975v3
- Date: Tue, 15 Mar 2022 17:30:37 GMT
- Title: Medical Code Assignment with Gated Convolution and Note-Code Interaction
- Authors: Shaoxiong Ji and Shirui Pan and Pekka Marttinen
- Abstract summary: We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI) for automatic medical code assignment.
With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes.
Our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.
- Score: 39.079615516043674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical code assignment from clinical text is a fundamental task in clinical
information system management. As medical notes are typically lengthy and the
medical coding system's code space is large, this task is a long-standing
challenge. Recent work applies deep neural network models to encode the medical
notes and assign medical codes to clinical documents. However, these methods
are still ineffective as they do not fully encode and capture the lengthy and
rich semantic information of medical notes nor explicitly exploit the
interactions between the notes and codes. We propose a novel method, gated
convolutional neural networks, and a note-code interaction (GatedCNN-NCI), for
automatic medical code assignment to overcome these challenges. Our methods
capture the rich semantic information of the lengthy clinical text for better
representation by utilizing embedding injection and gated information
propagation in the medical note encoding module. With a novel note-code
interaction design and a graph message passing mechanism, we explicitly capture
the underlying dependency between notes and codes, enabling effective code
prediction. A weight sharing scheme is further designed to decrease the number
of trainable parameters. Empirical experiments on real-world clinical datasets
show that our proposed model outperforms state-of-the-art models in most cases,
and our model size is on par with light-weighted baselines.
Related papers
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
Prediction of medical codes from clinical notes is a practical and essential need for every healthcare delivery organization.
The biggest challenge is directly identifying appropriate medical codes from several thousands of high-dimensional codes from unstructured free-text clinical notes.
Recent studies have shown the state-of-the-art code prediction results of full-fledged deep learning-based methods.
arXiv Detail & Related papers (2022-10-30T14:24:13Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction
from Clinical Notes by Machines [0.42641920138420947]
We present our Read, Attend, and Code (RAC) model for learning the medical code assignment mappings.
RAC establishes a new state of the art (SOTA) considerably outperforming the current best Macro-F1 by 18.7%.
This new milestone marks a meaningful step toward fully autonomous medical coding (AMC) in machines.
arXiv Detail & Related papers (2021-07-10T06:01:58Z) - Multitask Recalibrated Aggregation Network for Medical Code Prediction [19.330911490203317]
We propose a multitask recalibrated aggregation network to solve the challenges of encoding lengthy and noisy clinical documents.
In particular, multitask learning shares information across different coding schemes and captures the dependencies between different medical codes.
Experiments with a real-world MIMIC-III dataset show significantly improved predictive performance.
arXiv Detail & Related papers (2021-04-02T09:22:10Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
It is not clear if pretrained models are useful for medical code prediction without further architecture engineering.
We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information.
Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes.
arXiv Detail & Related papers (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Dilated Convolutional Attention Network for Medical Code Assignment from
Clinical Text [19.701824507057623]
This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment.
It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size.
arXiv Detail & Related papers (2020-09-30T11:55:58Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.