A Meta-embedding-based Ensemble Approach for ICD Coding Prediction
- URL: http://arxiv.org/abs/2102.13622v1
- Date: Fri, 26 Feb 2021 17:49:58 GMT
- Title: A Meta-embedding-based Ensemble Approach for ICD Coding Prediction
- Authors: Pavithra Rajendran, Alexandros Zenonos, Josh Spear, Rebecca Pope
- Abstract summary: International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
- Score: 64.42386426730695
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: International Classification of Diseases (ICD) are the de facto codes used
globally for clinical coding. These codes enable healthcare providers to claim
reimbursement and facilitate efficient storage and retrieval of diagnostic
information. The problem of automatically assigning ICD codes has been
approached in literature as a multilabel classification, using neural models on
unstructured data. Our proposed approach enhances the performance of neural
models by effectively training word vectors using routine medical data as well
as external knowledge from scientific articles. Furthermore, we exploit the
geometric properties of the two sets of word vectors and combine them into a
common dimensional space, using meta-embedding techniques. We demonstrate the
efficacy of this approach for a multimodal setting, using unstructured and
structured information. We empirically show that our approach improves the
current state-of-the-art deep learning architectures and benefits ensemble
models.
Related papers
- Large Language Model in Medical Informatics: Direct Classification and Enhanced Text Representations for Automatic ICD Coding [7.0413463890126735]
This paper explores the use of Large Language Models (LLM), specifically the LLAMA architecture, to enhance ICD code classification.
We evaluate these methods by comparing them against state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-11T09:31:46Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Towards Semi-Structured Automatic ICD Coding via Tree-based Contrastive
Learning [18.380293890624102]
We investigate the semi-structured nature of clinical notes and propose an automatic algorithm to segment them into sections.
To address the variability issues in existing ICD coding models with limited data, we introduce a contrastive pre-training approach on sections.
arXiv Detail & Related papers (2023-10-14T22:07:13Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - A Systematic Literature Review of Automated ICD Coding and
Classification Systems using Discharge Summaries [5.156484100374058]
Codification of free-text clinical narratives has long been recognised to be beneficial for secondary uses such as funding, insurance claim processing and research.
The current scenario of assigning codes is a manual process which is very expensive, time-consuming and error prone.
This systematic literature review provides a comprehensive overview of automated clinical coding systems.
arXiv Detail & Related papers (2021-07-12T03:55:17Z) - An Explainable CNN Approach for Medical Codes Prediction from Clinical
Text [1.7746314978241657]
We develop CNN-based methods for automatic ICD coding based on clinical text from intensive care unit (ICU) stays.
We come up with the Shallow and Wide Attention convolutional Mechanism (SWAM), which allows our model to learn local and low-level features for each label.
arXiv Detail & Related papers (2021-01-14T02:05:34Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.