Differentiable Implicit Layers
- URL: http://arxiv.org/abs/2010.07078v2
- Date: Mon, 16 Nov 2020 10:25:13 GMT
- Title: Differentiable Implicit Layers
- Authors: Andreas Look, Simona Doneva, Melih Kandemir, Rainer Gemulla, Jan
Peters
- Abstract summary: In this paper, we introduce an efficient backpropagation scheme for non-constrained implicit functions.
We demonstrate our scheme on different applications: (i) neural ODEs with the implicit Euler method, and (ii) system identification in model predictive control.
- Score: 37.14578406197477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce an efficient backpropagation scheme for
non-constrained implicit functions. These functions are parametrized by a set
of learnable weights and may optionally depend on some input; making them
perfectly suitable as a learnable layer in a neural network. We demonstrate our
scheme on different applications: (i) neural ODEs with the implicit Euler
method, and (ii) system identification in model predictive control.
Related papers
- Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - A Constructive Approach to Function Realization by Neural Stochastic
Differential Equations [8.04975023021212]
We introduce structural restrictions on system dynamics and characterize the class of functions that can be realized by such a system.
The systems are implemented as a cascade interconnection of a neural differential equation (Neural SDE), a deterministic dynamical system, and a readout map.
arXiv Detail & Related papers (2023-07-01T03:44:46Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
We propose a new approach to learning the subgrid-scale model when simulating partial differential equations (PDEs)
In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid-scale parameterization.
Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers.
arXiv Detail & Related papers (2022-12-20T02:45:09Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand.
This paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling.
arXiv Detail & Related papers (2022-11-13T17:48:04Z) - Adaptive Group Lasso Neural Network Models for Functions of Few
Variables and Time-Dependent Data [4.18804572788063]
We approximate the target function by a deep neural network and enforce an adaptive group Lasso constraint to the weights of a suitable hidden layer.
Our empirical studies show that the proposed method outperforms recent state-of-the-art methods including the sparse dictionary matrix method.
arXiv Detail & Related papers (2021-08-24T16:16:46Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
We propose a data driven approach where parameters of the SDE are represented by a neural network with a built-in SDE integration scheme.
The algorithm is applied to the geometric brownian motion and a version of the Lorenz-63 model.
arXiv Detail & Related papers (2021-05-18T11:41:34Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.