A Constructive Approach to Function Realization by Neural Stochastic
Differential Equations
- URL: http://arxiv.org/abs/2307.00215v2
- Date: Thu, 21 Sep 2023 17:25:50 GMT
- Title: A Constructive Approach to Function Realization by Neural Stochastic
Differential Equations
- Authors: Tanya Veeravalli, Maxim Raginsky
- Abstract summary: We introduce structural restrictions on system dynamics and characterize the class of functions that can be realized by such a system.
The systems are implemented as a cascade interconnection of a neural differential equation (Neural SDE), a deterministic dynamical system, and a readout map.
- Score: 8.04975023021212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of function approximation by neural dynamical systems has
typically been approached in a top-down manner: Any continuous function can be
approximated to an arbitrary accuracy by a sufficiently complex model with a
given architecture. This can lead to high-complexity controls which are
impractical in applications. In this paper, we take the opposite, constructive
approach: We impose various structural restrictions on system dynamics and
consequently characterize the class of functions that can be realized by such a
system. The systems are implemented as a cascade interconnection of a neural
stochastic differential equation (Neural SDE), a deterministic dynamical
system, and a readout map. Both probabilistic and geometric (Lie-theoretic)
methods are used to characterize the classes of functions realized by such
systems.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Reconstruction of dynamic systems using genetic algorithms with dynamic search limits [0.0]
evolutionary computing techniques are presented to estimate the governing equations of a dynamical system using time-series data.
Some of the main contributions of the present study are an adequate modification of the genetic algorithm to remove terms with minimal contributions, and a mechanism to escape local optima.
Our results demonstrate a reconstruction with an Integral Square Error below 0.22 and a coefficient of determination R-squared of 0.99 for all systems.
arXiv Detail & Related papers (2024-12-03T22:58:25Z) - KAN/MultKAN with Physics-Informed Spline fitting (KAN-PISF) for ordinary/partial differential equation discovery of nonlinear dynamic systems [0.0]
There is a dire need to interpret the machine learning models to develop a physical understanding of dynamic systems.
In this study, an equation discovery framework is proposed that includes i) sequentially regularized derivatives for denoising (SRDD) algorithm to denoise the measure data, ii) KAN to identify the equation structure and suggest relevant nonlinear functions.
arXiv Detail & Related papers (2024-11-18T18:14:51Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Sparse identification of quasipotentials via a combined data-driven method [4.599618895656792]
We leverage on machine learning via the combination of two data-driven techniques, namely a neural network and a sparse regression algorithm, to obtain symbolic expressions of quasipotential functions.
We show that our approach discovers a parsimonious quasipotential equation for an archetypal model with a known exact quasipotential and for the dynamics of a nanomechanical resonator.
arXiv Detail & Related papers (2024-07-06T11:27:52Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
We propose a data driven approach where parameters of the SDE are represented by a neural network with a built-in SDE integration scheme.
The algorithm is applied to the geometric brownian motion and a version of the Lorenz-63 model.
arXiv Detail & Related papers (2021-05-18T11:41:34Z) - Differentiable Implicit Layers [37.14578406197477]
In this paper, we introduce an efficient backpropagation scheme for non-constrained implicit functions.
We demonstrate our scheme on different applications: (i) neural ODEs with the implicit Euler method, and (ii) system identification in model predictive control.
arXiv Detail & Related papers (2020-10-14T13:26:27Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.