Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain
- URL: http://arxiv.org/abs/2010.07232v6
- Date: Thu, 22 Apr 2021 17:24:16 GMT
- Title: Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain
- Authors: Yuan Miao, Enej Ilievski, Oleksandr Gamayun
- Abstract summary: We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
- Score: 21.24186888129542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using the algebro-geometric approach, we study the structure of
semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin
chain. We outline how classical nonlinear spin waves governed by the
anisotropic Landau-Lifshitz equation arise as coherent macroscopic low-energy
fluctuations of the ferromagnetic ground state. Special emphasis is devoted to
the simplest types of solutions, describing precessional motion and elliptic
magnetisation waves. The internal magnon structure of classical spin waves is
resolved by performing the semi-classical quantisation using the
Riemann-Hilbert problem approach. We present an expression for the overlap of
two semi-classical eigenstates and discuss how correlation functions at the
semi-classical level arise from classical phase-space averaging.
Related papers
- From integrability to chaos: the quantum-classical correspondence in a triple well bosonic model [0.0]
We investigate the semiclassical limit of a bosonic quantum many-body system exhibiting both integrable and chaotic behavior.
The transition from regularity to chaos in classical dynamics is visualized through Poincar'e sections.
The study systematically establishes quantum-classical correspondence for a bosonic many-body system with more than two wells.
arXiv Detail & Related papers (2023-11-22T06:31:00Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - A healthier semi-classical dynamics [0.0]
We study the back-reaction of quantum systems onto classical ones.
We take the starting point that semi-classical physics should be described at all times by a point in classical phase space and a quantum state in Hilbert space.
arXiv Detail & Related papers (2022-08-24T18:04:14Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum entanglement from classical trajectories [0.0]
A long-standing challenge in mixed quantum-classical trajectory simulations is the treatment of entanglement between the classical and quantal degrees of freedom.
We present a novel approach which describes the emergence of entangled states entirely in terms of independent and deterministic Ehrenfest-like classical trajectories.
arXiv Detail & Related papers (2021-05-05T14:19:54Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.