論文の概要: Auto-calibration Method Using Stop Signs for Urban Autonomous Driving
Applications
- arxiv url: http://arxiv.org/abs/2010.07441v2
- Date: Thu, 18 Mar 2021 19:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 14:24:06.376707
- Title: Auto-calibration Method Using Stop Signs for Urban Autonomous Driving
Applications
- Title(参考訳): 停留標識を用いた都市自律運転用自動校正法
- Authors: Yunhai Han, Yuhan Liu, David Paz, Henrik Christensen
- Abstract要約: 自然環境においては、外乱はキャリブレーションに容易に挑戦することができる。1つの可能性として、既知の形状の自然物体をセンサーの校正に利用することが挙げられる。
停留所標識などの交通標識の認識とカメラの再校正への利用に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 12.960269825082708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calibration of sensors is fundamental to robust performance for intelligent
vehicles. In natural environments, disturbances can easily challenge
calibration. One possibility is to use natural objects of known shape to
recalibrate sensors. An approach based on recognition of traffic signs, such as
stop signs, and use of them for recalibration of cameras is presented. The
approach is based on detection, geometry estimation, calibration, and recursive
updating. Results from natural environments are presented that clearly show
convergence and improved performance.
- Abstract(参考訳): センサのキャリブレーションは、インテリジェントな車両のロバストな性能に欠かせない。
自然環境においては、外乱は容易に校正に挑戦できる。
1つの可能性として、既知の形状の自然な物体を使ってセンサーを校正する。
停止標識などの交通標識の認識に基づくアプローチと、カメラの再調整のためのそれらの使用について述べる。
このアプローチは、検出、幾何推定、キャリブレーション、再帰的な更新に基づいている。
自然環境からの結果が明らかに収束し,性能が向上した。
関連論文リスト
- A re-calibration method for object detection with multi-modal alignment bias in autonomous driving [7.601405124830806]
自律走行における多モード物体検出は、異なるセンサからの補完情報を融合させることにより、大きなブレークスルーを達成した。
実際には、キャリブレーション行列は車両が工場を出る際に固定されるが、振動、バンプ、データラグはキャリブレーションバイアスを引き起こす可能性がある。
我々は,SOTA検出方式EPNet++の実験を行い,キャリブレーションの偏りをわずかに示し,性能を著しく低下させることを示した。
論文 参考訳(メタデータ) (2024-05-27T05:46:37Z) - SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using Neural Radiance Fields [10.958143040692141]
自律運転のような急速に進化する領域では、動作精度と安定性を確保するために、異なるモードの複数のセンサーを使用することが不可欠である。
各センサが提供した情報を単一の共通フレームで正確に活用するためには、これらのセンサを正確に校正することが不可欠である。
我々は、共通の表現において異なるモダリティを表現するために、ニューラルラジアンス場(Neural Radiance Fields)の能力を利用する。
論文 参考訳(メタデータ) (2023-11-27T13:25:47Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
本稿では,自動車用レーダセンサの自動校正手法を提案する。
本手法では, 車両の外部改造を必要とせず, 自動走行車から得られる位置情報を利用する。
実地試験場からのデータを評価した結果,インフラセンサを自動で正確に校正できることが判明した。
論文 参考訳(メタデータ) (2023-06-23T07:01:10Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
自動ジオレファレンスカメラキャリブレーションのためのロバストキャリブレーション法を提案する。
本手法では, フィルタ/RTK受信機と慣性測定ユニット(IMU)を組み合わせたキャリブレーション車両が必要である。
我々の手法は、インフラと車両の両方で記録された情報と人間との相互作用を一切必要としない。
論文 参考訳(メタデータ) (2023-04-21T08:50:52Z) - Online Camera-to-ground Calibration for Autonomous Driving [26.357898919134833]
運転中に特定の目標を利用できないオンライン単眼カメラ・地上キャリブレーションソリューションを提案する。
キャリブレーション性能の定量化と,満足度の高いキャリブレーション結果の報告・放送の停止基準を提供する。
論文 参考訳(メタデータ) (2023-03-30T04:01:48Z) - Simulating Road Spray Effects in Automotive Lidar Sensor Models [22.047932516111732]
本研究では,ライダーデータに噴霧する新しいモデリング手法を提案する。
このモデルはOpen Simulation Interface (OSI)標準に準拠しており、噴霧管内の検出クラスターの形成に基づいている。
このモデルにより,実世界の噴霧シナリオの検出が大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2022-12-16T16:25:36Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
本稿では,セグメンテーション情報を利用してパラメータ推定を自動化する,外部カメラキャリブレーション手法を提案する。
われわれのアプローチは、カメラのポーズの粗い初期測定と、車両に搭載されたライダーセンサーによる構築に依存している。
シミュレーションおよび実世界のデータを用いて,キャリブレーション結果の低誤差測定を行う。
論文 参考訳(メタデータ) (2022-08-08T07:25:03Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。