論文の概要: MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking
- arxiv url: http://arxiv.org/abs/2010.07548v2
- Date: Tue, 8 Dec 2020 09:10:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 04:09:02.840528
- Title: MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking
- Title(参考訳): motchallenge - シングルカメラマルチターゲットトラッキングのためのベンチマーク
- Authors: Patrick Dendorfer and Aljo\v{s}a O\v{s}ep and Anton Milan and Konrad
Schindler and Daniel Cremers and Ian Reid and Stefan Roth and Laura
Leal-Taix\'e
- Abstract要約: 単カメラ多目的追跡(MOT)のためのベンチマークMOTChallengeを提案する。
このベンチマークは、歩行者がトラッキングコミュニティで最も研究されているオブジェクトであるため、複数の人を追跡することに重点を置いている。
我々は,最先端トラッカーの分類と広い誤差解析を行う。
- 参考スコア(独自算出の注目度): 72.76685780516371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standardized benchmarks have been crucial in pushing the performance of
computer vision algorithms, especially since the advent of deep learning.
Although leaderboards should not be over-claimed, they often provide the most
objective measure of performance and are therefore important guides for
research. We present MOTChallenge, a benchmark for single-camera Multiple
Object Tracking (MOT) launched in late 2014, to collect existing and new data,
and create a framework for the standardized evaluation of multiple object
tracking methods. The benchmark is focused on multiple people tracking, since
pedestrians are by far the most studied object in the tracking community, with
applications ranging from robot navigation to self-driving cars. This paper
collects the first three releases of the benchmark: (i) MOT15, along with
numerous state-of-the-art results that were submitted in the last years, (ii)
MOT16, which contains new challenging videos, and (iii) MOT17, that extends
MOT16 sequences with more precise labels and evaluates tracking performance on
three different object detectors. The second and third release not only offers
a significant increase in the number of labeled boxes but also provide labels
for multiple object classes beside pedestrians, as well as the level of
visibility for every single object of interest. We finally provide a
categorization of state-of-the-art trackers and a broad error analysis. This
will help newcomers understand the related work and research trends in the MOT
community, and hopefully shed some light on potential future research
directions.
- Abstract(参考訳): 標準化されたベンチマークは、特にディープラーニングの出現以来、コンピュータビジョンアルゴリズムのパフォーマンス向上に不可欠である。
リーダーボードは過大評価されるべきではないが、パフォーマンスの最も客観的な尺度を提供することが多く、研究のための重要なガイドである。
このベンチマークは、既存のデータと新しいデータを収集し、複数のオブジェクト追跡手法の標準化評価のためのフレームワークを作成する。
このベンチマークは、複数の人の追跡に焦点を当てている。歩行者は、ロボットナビゲーションから自動運転車まで、トラッキングコミュニティで最も研究されているオブジェクトである。
本稿では、ベンチマークの最初の3つのリリースをまとめる。
(i)過去数年間に提出された数多くの最先端の結果とともにMOT15
(ii)新しい挑戦的なビデオを含むMOT16、
3) MOT17はMOT16配列をより正確なラベルで拡張し、3つの異なる物体検出器の追跡性能を評価する。
第2リリースと第3リリースは、ラベル付きボックスの数が大幅に増加しただけでなく、歩行者の横にある複数のオブジェクトクラスのラベルや、関心のあるすべてのオブジェクトの可視性も提供する。
最終的に、最先端トラッカーの分類と広範なエラー解析を提供する。
これは、新参者がmotコミュニティにおける関連する仕事や研究のトレンドを理解するのに役立つだろう。
関連論文リスト
- Tracking Reflected Objects: A Benchmark [12.770787846444406]
我々は、反射オブジェクトのトラッキングに特化したベンチマークであるTROを紹介します。
TROは、約70,000フレームの200のシーケンスを含み、それぞれにバウンディングボックスを慎重にアノテートする。
より強力なベースラインを提供するために,階層的特徴を用いて性能を向上させる新しいトラッカーであるHiP-HaTrackを提案する。
論文 参考訳(メタデータ) (2024-07-07T02:22:45Z) - OVTrack: Open-Vocabulary Multiple Object Tracking [64.73379741435255]
OVTrackは任意のオブジェクトクラスを追跡することができるオープン語彙トラッカーである。
大規模な大語彙のTAOベンチマークに新たな最先端技術が設定されている。
論文 参考訳(メタデータ) (2023-04-17T16:20:05Z) - Beyond SOT: Tracking Multiple Generic Objects at Once [141.36900362724975]
ジェネリックオブジェクト追跡(ジェネリックオブジェクト追跡、英: Generic Object Tracking、GOT)は、ビデオの最初のフレームでボックスをバウンディングすることによって指定されたターゲットオブジェクトを追跡する問題である。
大規模GOTベンチマークであるLaGOTを導入し,複数のアノテート対象オブジェクトをシーケンス毎に含む。
提案手法は単一オブジェクトのGOTデータセットに対して高い競合性を実現し,TrackingNet上での新たな技術状態が84.4%の成功率で設定されている。
論文 参考訳(メタデータ) (2022-12-22T17:59:19Z) - AttTrack: Online Deep Attention Transfer for Multi-object Tracking [4.5116674432168615]
マルチオブジェクトトラッキング(MOT)は、監視や自動運転といったインテリジェントなビデオ分析アプリケーションにおいて重要なコンポーネントである。
本稿では,複雑なネットワーク(教師)の高レベルな特徴から,学習時間と推論時間の両方で軽量なネットワーク(学生)に知識を伝達することにより,MOTの高速化を目指す。
提案した AttTrack フレームワークは,1) 教師モデルと学生モデルから中間表現を整合させるクロスモデル特徴学習,2) 推論時に2つのモデルの実行をインターリーブすること,3) 教師モデルから更新された予測を事前知識として取り入れ,学生モデルを支援する。
論文 参考訳(メタデータ) (2022-10-16T22:15:31Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
本稿では,トラックレット提案の確率的自己回帰運動モデルを提案する。
これは、我々のモデルを訓練して、自然のトラックレットの基盤となる分布を学習することで達成される。
我々の実験は、挑戦的なシーケンスにおける物体の追跡におけるアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2020-12-03T23:59:27Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
オブジェクトのデータセットの追跡は2,907本の高解像度ビデオで構成され、平均で30分の長さの多様な環境でキャプチャされる。
ビデオの任意の時点で移動するオブジェクトにアノテータにラベルを付け、ファクトラムの後に名前を付けるように求めます。
我々の語彙は、既存の追跡データセットと著しく大きく、質的に異なる。
論文 参考訳(メタデータ) (2020-05-20T21:07:28Z) - MOT20: A benchmark for multi object tracking in crowded scenes [73.92443841487503]
我々は,非常に混み合ったシーンを描写した8つの新しいシーケンスからなるMOT20ベンチマークを提示する。
ベンチマークは第4回BMTT MOT Challenge Workshop at the Computer Vision and Pattern Recognition Conference (CVPR)で初めて発表された。
論文 参考訳(メタデータ) (2020-03-19T20:08:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。