Multi-Agent Trust Region Policy Optimization
- URL: http://arxiv.org/abs/2010.07916v3
- Date: Sat, 5 Aug 2023 01:00:50 GMT
- Title: Multi-Agent Trust Region Policy Optimization
- Authors: Hepeng Li and Haibo He
- Abstract summary: We show that the policy update of TRPO can be transformed into a distributed consensus optimization problem for multi-agent cases.
We propose a decentralized MARL algorithm, which we call multi-agent TRPO (MATRPO)
- Score: 34.91180300856614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend trust region policy optimization (TRPO) to multi-agent
reinforcement learning (MARL) problems. We show that the policy update of TRPO
can be transformed into a distributed consensus optimization problem for
multi-agent cases. By making a series of approximations to the consensus
optimization model, we propose a decentralized MARL algorithm, which we call
multi-agent TRPO (MATRPO). This algorithm can optimize distributed policies
based on local observations and private rewards. The agents do not need to know
observations, rewards, policies or value/action-value functions of other
agents. The agents only share a likelihood ratio with their neighbors during
the training process. The algorithm is fully decentralized and
privacy-preserving. Our experiments on two cooperative games demonstrate its
robust performance on complicated MARL tasks.
Related papers
- Optimistic Multi-Agent Policy Gradient [23.781837938235036]
Relative overgeneralization (RO) occurs when agents converge towards a suboptimal joint policy.
No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods.
We propose a general, yet simple, framework to enable optimistic updates in MAPG methods that alleviate the RO problem.
arXiv Detail & Related papers (2023-11-03T14:47:54Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - RPM: Generalizable Behaviors for Multi-Agent Reinforcement Learning [90.43925357575543]
We propose ranked policy memory ( RPM) to collect diverse multi-agent trajectories for training MARL policies with good generalizability.
RPM enables MARL agents to interact with unseen agents in multi-agent generalization evaluation scenarios and complete given tasks, and it significantly boosts the performance up to 402% on average.
arXiv Detail & Related papers (2022-10-18T07:32:43Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL)
In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods.
We show that TAD-PPO can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
arXiv Detail & Related papers (2022-07-12T06:59:13Z) - Decentralized Multi-Agent Reinforcement Learning: An Off-Policy Method [6.261762915564555]
We discuss the problem of decentralized multi-agent reinforcement learning (MARL) in this work.
In our setting, the global state, action, and reward are assumed to be fully observable, while the local policy is protected as privacy by each agent, and thus cannot be shared with others.
The policy evaluation and policy improvement algorithms are designed for discrete and continuous state-action-space Markov Decision Process (MDP) respectively.
arXiv Detail & Related papers (2021-10-31T09:08:46Z) - Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning [25.027143431992755]
Trust region methods rigorously enabled reinforcement learning (RL) agents to learn monotonically improving policies, leading to superior performance on a variety of tasks.
Unfortunately, when it comes to multi-agent reinforcement learning (MARL), the property of monotonic improvement may not simply apply.
In this paper, we extend the theory of trust region learning to MARL. Central to our findings are the multi-agent advantage decomposition lemma and the sequential policy update scheme.
Based on these, we develop Heterogeneous-Agent Trust Region Policy optimisation (HATPRO) and Heterogeneous-Agent Proximal Policy optimisation (
arXiv Detail & Related papers (2021-09-23T09:44:35Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
Non-stationarity is one thorny issue in multi-agent reinforcement learning.
We introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence.
We propose a trust region decomposition network based on message passing to estimate the joint policy divergence.
arXiv Detail & Related papers (2021-02-21T14:46:50Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.