An Empowerment-based Solution to Robotic Manipulation Tasks with Sparse
Rewards
- URL: http://arxiv.org/abs/2010.07986v3
- Date: Wed, 16 Jun 2021 22:07:55 GMT
- Title: An Empowerment-based Solution to Robotic Manipulation Tasks with Sparse
Rewards
- Authors: Siyu Dai, Wei Xu, Andreas Hofmann, Brian Williams
- Abstract summary: It is important for robotic manipulators to learn to accomplish tasks even if they are only provided with very sparse instruction signals.
This paper proposes an intrinsic motivation approach that can be easily integrated into any standard reinforcement learning algorithm.
- Score: 14.937474939057596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to provide adaptive and user-friendly solutions to robotic
manipulation, it is important that the agent can learn to accomplish tasks even
if they are only provided with very sparse instruction signals. To address the
issues reinforcement learning algorithms face when task rewards are sparse,
this paper proposes an intrinsic motivation approach that can be easily
integrated into any standard reinforcement learning algorithm and can allow
robotic manipulators to learn useful manipulation skills with only sparse
extrinsic rewards. Through integrating and balancing empowerment and curiosity,
this approach shows superior performance compared to other state-of-the-art
intrinsic exploration approaches during extensive empirical testing.
Qualitative analysis also shows that when combined with diversity-driven
intrinsic motivations, this approach can help manipulators learn a set of
diverse skills which could potentially be applied to other more complicated
manipulation tasks and accelerate their learning process.
Related papers
- SLIM: Skill Learning with Multiple Critics [8.645929825516818]
Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment.
Latent variable models, based on mutual information, have been successful in this task but still struggle in the context of robotic manipulation.
We introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation.
arXiv Detail & Related papers (2024-02-01T18:07:33Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
We present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN)
ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning.
Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks.
arXiv Detail & Related papers (2023-06-30T20:35:22Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Unsupervised Reinforcement Learning for Transferable Manipulation Skill
Discovery [22.32327908453603]
Current reinforcement learning (RL) in robotics often experiences difficulty in generalizing to new downstream tasks.
We propose a framework that pre-trains the agent in a task-agnostic manner without access to the task-specific reward.
We show that our approach achieves the most diverse interacting behavior and significantly improves sample efficiency in downstream tasks.
arXiv Detail & Related papers (2022-04-29T06:57:46Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - SKID RAW: Skill Discovery from Raw Trajectories [23.871402375721285]
It is desirable to only demonstrate full task executions instead of all individual skills.
We propose a novel approach that simultaneously learns to segment trajectories into reoccurring patterns.
The approach learns a skill conditioning that can be used to understand possible sequences of skills.
arXiv Detail & Related papers (2021-03-26T17:27:13Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.