Unsupervised Reinforcement Learning for Transferable Manipulation Skill
Discovery
- URL: http://arxiv.org/abs/2204.13906v1
- Date: Fri, 29 Apr 2022 06:57:46 GMT
- Title: Unsupervised Reinforcement Learning for Transferable Manipulation Skill
Discovery
- Authors: Daesol Cho, Jigang Kim, H. Jin Kim
- Abstract summary: Current reinforcement learning (RL) in robotics often experiences difficulty in generalizing to new downstream tasks.
We propose a framework that pre-trains the agent in a task-agnostic manner without access to the task-specific reward.
We show that our approach achieves the most diverse interacting behavior and significantly improves sample efficiency in downstream tasks.
- Score: 22.32327908453603
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current reinforcement learning (RL) in robotics often experiences difficulty
in generalizing to new downstream tasks due to the innate task-specific
training paradigm. To alleviate it, unsupervised RL, a framework that
pre-trains the agent in a task-agnostic manner without access to the
task-specific reward, leverages active exploration for distilling diverse
experience into essential skills or reusable knowledge. For exploiting such
benefits also in robotic manipulation, we propose an unsupervised method for
transferable manipulation skill discovery that ties structured exploration
toward interacting behavior and transferable skill learning. It not only
enables the agent to learn interaction behavior, the key aspect of the robotic
manipulation learning, without access to the environment reward, but also to
generalize to arbitrary downstream manipulation tasks with the learned
task-agnostic skills. Through comparative experiments, we show that our
approach achieves the most diverse interacting behavior and significantly
improves sample efficiency in downstream tasks including the extension to
multi-object, multitask problems.
Related papers
- SLIM: Skill Learning with Multiple Critics [8.645929825516818]
Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment.
Latent variable models, based on mutual information, have been successful in this task but still struggle in the context of robotic manipulation.
We introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation.
arXiv Detail & Related papers (2024-02-01T18:07:33Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - Hierarchical Skills for Efficient Exploration [70.62309286348057]
In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration.
Prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design.
We propose a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner.
arXiv Detail & Related papers (2021-10-20T22:29:32Z) - Learning Task Agnostic Skills with Data-driven Guidance [0.0]
This paper proposes a framework for guiding the skill discovery towards the subset of expert-visited states.
We apply our method in various reinforcement learning tasks and show that such a projection results in more useful behaviours.
arXiv Detail & Related papers (2021-08-04T06:53:10Z) - Behavior Self-Organization Supports Task Inference for Continual Robot
Learning [18.071689266826212]
We propose a novel approach to continual learning of robotic control tasks.
Our approach performs unsupervised learning of behavior embeddings by incrementally self-organizing demonstrated behaviors.
Unlike previous approaches, our approach makes no assumptions about task distribution and requires no task exploration to infer tasks.
arXiv Detail & Related papers (2021-07-09T16:37:27Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale [103.7609761511652]
We show how a large-scale collective robotic learning system can acquire a repertoire of behaviors simultaneously.
New tasks can be continuously instantiated from previously learned tasks.
We train and evaluate our system on a set of 12 real-world tasks with data collected from 7 robots.
arXiv Detail & Related papers (2021-04-16T16:38:02Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - An Empowerment-based Solution to Robotic Manipulation Tasks with Sparse
Rewards [14.937474939057596]
It is important for robotic manipulators to learn to accomplish tasks even if they are only provided with very sparse instruction signals.
This paper proposes an intrinsic motivation approach that can be easily integrated into any standard reinforcement learning algorithm.
arXiv Detail & Related papers (2020-10-15T19:06:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.