Distributed Representations of Entities in Open-World Knowledge Graphs
- URL: http://arxiv.org/abs/2010.08114v2
- Date: Thu, 4 Apr 2024 03:12:50 GMT
- Title: Distributed Representations of Entities in Open-World Knowledge Graphs
- Authors: Lingbing Guo, Zhuo Chen, Jiaoyan Chen, Yichi Zhang, Zequn Sun, Zhongpo Bo, Yin Fang, Xiaoze Liu, Huajun Chen, Wen Zhang,
- Abstract summary: Graph neural network (GNN)-based methods have demonstrated remarkable performance in various knowledge graph (KG) tasks.
We introduce Decentralized Attention Network (DAN) to observe only new entities.
Our method significantly outperforms existing methods in open-world settings.
- Score: 47.406633469890686
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graph neural network (GNN)-based methods have demonstrated remarkable performance in various knowledge graph (KG) tasks. However, most existing approaches rely on observing all entities during training, posing a challenge in real-world knowledge graphs where new entities emerge frequently. To address this limitation, we introduce Decentralized Attention Network (DAN). DAN leverages neighbor context as the query vector to score the neighbors of an entity, thereby distributing the entity semantics only among its neighbor embeddings. To effectively train a DAN, we introduce self-distillation, a technique that guides the network in generating desired representations. Theoretical analysis validates the effectiveness of our approach. We implement an end-to-end framework and conduct extensive experiments to evaluate our method, showcasing competitive performance on conventional entity alignment and entity prediction tasks. Furthermore, our method significantly outperforms existing methods in open-world settings.
Related papers
- Less is More: Toward Zero-Shot Local Scene Graph Generation via
Foundation Models [16.08214739525615]
We present a new task called Local Scene Graph Generation.
It aims to abstract pertinent structural information with partial objects and their relationships in an image.
We introduce zEro-shot Local scEne GrAph geNeraTion (ELEGANT), a framework harnessing foundation models renowned for their powerful perception and commonsense reasoning.
arXiv Detail & Related papers (2023-10-02T17:19:04Z) - Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis [18.11743347414004]
Rule-based methods significantly outperform state-of-the-art methods based on Graph Neural Networks (GNNs)
We study a number of variants of a rule-based approach, which are specifically aimed at addressing the aforementioned issues.
We find that the resulting models can achieve a performance which is close to that of NBFNet.
arXiv Detail & Related papers (2023-08-14T21:01:29Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation.
We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head.
arXiv Detail & Related papers (2023-07-05T09:28:25Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
We show that applying methods and architectures from the explainability literature can achieve state-of-the-art performance for the challenging task of domain generalization.
We develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features.
Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.
arXiv Detail & Related papers (2021-04-05T02:27:01Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.