Quantifying Challenges in the Application of Graph Representation
Learning
- URL: http://arxiv.org/abs/2006.10252v1
- Date: Thu, 18 Jun 2020 03:19:43 GMT
- Title: Quantifying Challenges in the Application of Graph Representation
Learning
- Authors: Antonia Gogoglou, C. Bayan Bruss, Brian Nguyen, Reza Sarshogh, Keegan
E. Hines
- Abstract summary: We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Representation Learning (GRL) has experienced significant progress as a
means to extract structural information in a meaningful way for subsequent
learning tasks. Current approaches including shallow embeddings and Graph
Neural Networks have mostly been tested with node classification and link
prediction tasks. In this work, we provide an application oriented perspective
to a set of popular embedding approaches and evaluate their representational
power with respect to real-world graph properties. We implement an extensive
empirical data-driven framework to challenge existing norms regarding the
expressive power of embedding approaches in graphs with varying patterns along
with a theoretical analysis of the limitations we discovered in this process.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in
real-world scenarios and as new methods are being introduced they should be
explicit about their ability to capture graph properties and their
applicability in datasets with non-trivial structural differences.
Related papers
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
We introduce SCORE, a unified graph reasoning framework that effectively generalizes diverse graph tasks using zero-shot learning.
We evaluate SCORE using 38 diverse graph datasets, covering node-level, link-level, and graph-level tasks across multiple domains.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
Topological Evolution Rate (TopER) is a low-dimensional embedding approach grounded in topological data analysis.
TopER simplifies a key topological approach, Persistent Homology, by calculating the evolution rate of graph substructures.
Our models achieve or surpass state-of-the-art results across molecular, biological, and social network datasets in tasks such as classification, clustering, and visualization.
arXiv Detail & Related papers (2024-10-02T17:31:33Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Disentangled Generative Graph Representation Learning [51.59824683232925]
This paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework.
It aims to learn latent disentangled factors and utilize them to guide graph mask modeling.
Experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods.
arXiv Detail & Related papers (2024-08-24T05:13:02Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
Graph representation learning aims to encode high-dimensional sparse graph-structured data into low-dimensional dense vectors.
Traditional methods have limited model capacity which limits the learning performance.
Deep graph representation learning has shown great potential and advantages over shallow (traditional) methods.
arXiv Detail & Related papers (2023-04-11T08:23:52Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.