論文の概要: In Depth Bayesian Semantic Scene Completion
- arxiv url: http://arxiv.org/abs/2010.08310v1
- Date: Fri, 16 Oct 2020 11:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 21:23:04.730571
- Title: In Depth Bayesian Semantic Scene Completion
- Title(参考訳): 深部ベイズ系セマンティックシーンの完成
- Authors: David Gillsj\"o, Kalle {\AA}str\"om
- Abstract要約: 本研究では,環境の3次元セマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックセマンティック
ベイズ畳み込みニューラルネットワーク (BCNN) を構築し, セグメンテーションを行い, モデルの不確実性を予測できる。
本研究では,SUNCGデータセット上で,カテゴリをテスト時に導入するセマンティックシーン補完タスクの結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies Semantic Scene Completion which aims to predict a 3D
semantic segmentation of our surroundings, even though some areas are occluded.
For this we construct a Bayesian Convolutional Neural Network (BCNN), which is
not only able to perform the segmentation, but also predict model uncertainty.
This is an important feature not present in standard CNNs.
We show on the MNIST dataset that the Bayesian approach performs equal or
better to the standard CNN when processing digits unseen in the training phase
when looking at accuracy, precision and recall. With the added benefit of
having better calibrated scores and the ability to express model uncertainty.
We then show results for the Semantic Scene Completion task where a category
is introduced at test time on the SUNCG dataset. In this more complex task the
Bayesian approach outperforms the standard CNN. Showing better Intersection
over Union score and excels in Average Precision and separation scores.
- Abstract(参考訳): 本研究は,一部の領域が隠されているにもかかわらず,周囲の3次元的な意味的セグメンテーションを予測することを目的とした意味的シーン補完について研究する。
そのため、ベイズ畳み込みニューラルネットワーク(BCNN)を構築し、セグメンテーションを行うだけでなく、モデルの不確実性を予測できる。
これは標準cnnにはない重要な機能である。
MNISTデータセット上では, 精度, 精度, リコールにおいて, トレーニングフェーズで見えない桁の処理を行う場合, ベイズ的手法が標準CNNと同等以上の性能を示すことを示す。
より良いキャリブレーションスコアとモデルの不確実性を表現できることのメリットが加わった。
次に、SUNCGデータセット上でテスト時にカテゴリを導入するセマンティックシーン補完タスクの結果を示す。
このより複雑なタスクでは、ベイズ的アプローチは標準CNNよりも優れている。
平均精度と分離スコアでユニオンスコアよりも優れたインターセクションを示す。
関連論文リスト
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for
XOR Data [24.86314525762012]
勾配降下法により訓練されたReLU CNNがベイズ最適精度付近で実現できることを示す。
以上の結果から,CNNは高い相関性のある特徴が存在する場合でも,効率よくXOR問題を学習する能力を有することが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T11:31:37Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - A Novel Hand Gesture Detection and Recognition system based on
ensemble-based Convolutional Neural Network [3.5665681694253903]
コンピュータビジョンとパターン認識コミュニティでは,手の部分検出が課題となっている。
畳み込みニューラルネットワーク(CNN)アーキテクチャのようなディープラーニングアルゴリズムは、分類タスクにおいて非常に一般的な選択肢となっている。
本稿では,CNNに基づくアプローチのアンサンブルを用いて,予測時の高分散や過度な問題,予測誤差などの問題を克服する。
論文 参考訳(メタデータ) (2022-02-25T06:46:58Z) - Increasing Trustworthiness of Deep Neural Networks via Accuracy
Monitoring [20.456742449675904]
ディープニューラルネットワーク(DNN)の推論精度は重要なパフォーマンス指標であるが、実際のテストデータセットによって大きく異なる可能性がある。
これにより、特に安全クリティカルなアプリケーションにおいて、DNNの信頼性に関する重要な懸念が持ち上がっている。
本稿では、DNNのソフトマックス確率出力のみを入力とするニューラルネットワークに基づく精度監視モデルを提案する。
論文 参考訳(メタデータ) (2020-07-03T03:09:36Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Test-Time Adaptable Neural Networks for Robust Medical Image
Segmentation [9.372152932156293]
畳み込みニューラルネットワーク(CNN)は、教師付き学習問題に対して非常にうまく機能する。
医用画像のセグメンテーションにおいて、この前提は、取得の詳細の観点から、トレーニング画像とテスト画像のミスマッチがある場合に違反する。
比較的浅い画像正規化CNNと、正規化画像を分割する深いCNNの2つのサブネットワークの結合としてセグメンテーションCNNを設計する。
論文 参考訳(メタデータ) (2020-04-09T16:57:27Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - On the Texture Bias for Few-Shot CNN Segmentation [21.349705243254423]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクを実行するために形状によって駆動される。
最近の証拠は、CNNのテクスチャバイアスが、大きなラベル付きトレーニングデータセットで学習するときに、より高いパフォーマンスのモデルを提供することを示している。
本稿では,特徴空間内の高周波局所成分を減衰させるために,ガウス差分(DoG)の集合を統合する新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-09T11:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。