論文の概要: Failures of model-dependent generalization bounds for least-norm
interpolation
- arxiv url: http://arxiv.org/abs/2010.08479v3
- Date: Wed, 20 Jan 2021 17:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 20:48:04.563386
- Title: Failures of model-dependent generalization bounds for least-norm
interpolation
- Title(参考訳): 最小ノルム補間に対するモデル依存一般化境界の失敗
- Authors: Peter L. Bartlett and Philip M. Long
- Abstract要約: 最小ノルム線形回帰器の一般化性能に関するバウンダリを考察する。
訓練例における様々な自然な関節分布に対して、任意の有効な一般化境界は非常に緩くなければならない。
- 参考スコア(独自算出の注目度): 39.97534972432276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider bounds on the generalization performance of the least-norm linear
regressor, in the over-parameterized regime where it can interpolate the data.
We describe a sense in which any generalization bound of a type that is
commonly proved in statistical learning theory must sometimes be very loose
when applied to analyze the least-norm interpolant. In particular, for a
variety of natural joint distributions on training examples, any valid
generalization bound that depends only on the output of the learning algorithm,
the number of training examples, and the confidence parameter, and that
satisfies a mild condition (substantially weaker than monotonicity in sample
size), must sometimes be very loose -- it can be bounded below by a constant
when the true excess risk goes to zero.
- Abstract(参考訳): 我々は,最小ノルム線形レグレッサの一般化性能の限界を,データの補間が可能なオーバーパラメータ化方式で検討する。
統計的学習理論で一般的に証明される型の任意の一般化境界は、最小ノルム補間子を解析する際には、しばしば非常に緩くなければならない。
特に、訓練例における様々な自然な関節分布において、学習アルゴリズムの出力、トレーニング例の数、信頼パラメータにのみ依存する有効な一般化は、穏やかな条件(サンプルサイズにおける単調性よりも下位に弱い)を満たすものであり、真の過剰リスクがゼロとなるとき、その下限は定数で制限される。
関連論文リスト
- On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds [11.30047438005394]
本研究では, 正規化ノルム $lVert cdot rVert$ を二項分類のための高次元対角訓練の文脈で選択する方法について検討する。
我々は、摂動サイズと$lVert cdot rVert$の最適選択との関係を定量的に評価し、データ不足状態において、摂動が大きくなるにつれて、正則化のタイプが敵の訓練にとってますます重要になっていることを確認する。
論文 参考訳(メタデータ) (2024-10-21T14:53:12Z) - Semi-parametric inference based on adaptively collected data [34.56133468275712]
データ収集における適応性を考慮した重み付き推定式を構築した。
本研究の結果は,正常性の保持に必要な「探索可能性」の度合いを特徴づけるものである。
我々は、標準線形帯域やスパース一般化帯域を含む様々な問題に対する具体的結果を用いて、我々の一般理論を説明する。
論文 参考訳(メタデータ) (2023-03-05T00:45:32Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
対数ソボレフ不等式の縮約性を利用する新しい一般化法を提案する。
我々は、この新たな損失段階的ノルム項が異なるニューラルネットワークに与える影響を実証的に分析する。
論文 参考訳(メタデータ) (2022-10-12T12:49:20Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - An Online Learning Approach to Interpolation and Extrapolation in Domain
Generalization [53.592597682854944]
リスクを最小化するプレイヤーと新しいテストを示す敵の間のオンラインゲームとしてサブグループの一般化を再放送する。
両課題に対してERMは極小最適であることを示す。
論文 参考訳(メタデータ) (2021-02-25T19:06:48Z) - Dimension Free Generalization Bounds for Non Linear Metric Learning [61.193693608166114]
我々はスパース体制と非スパース体制という2つの体制に対して一様一般化境界を提供する。
解の異なる新しい性質を頼りにすることで、次元自由一般化保証を提供することができることを示す。
論文 参考訳(メタデータ) (2021-02-07T14:47:00Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
ラベルに関連付けられた用語への分散の解釈可能で対称的な分解について述べる。
バイアスはネットワーク幅とともに単調に減少するが、分散項は非単調な振る舞いを示す。
我々はまた、著しく豊かな現象論も分析する。
論文 参考訳(メタデータ) (2020-11-04T21:04:02Z) - Benign overfitting in ridge regression [0.0]
過度にパラメータ化されたリッジ回帰に対する漸近的でない一般化境界を提供する。
最小あるいは負の正則化が小さい一般化誤差を得るのに十分であるかどうかを同定する。
論文 参考訳(メタデータ) (2020-09-29T20:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。