Feature Selection for Huge Data via Minipatch Learning
- URL: http://arxiv.org/abs/2010.08529v2
- Date: Wed, 10 Feb 2021 23:40:25 GMT
- Title: Feature Selection for Huge Data via Minipatch Learning
- Authors: Tianyi Yao and Genevera I. Allen
- Abstract summary: We propose Stable Minipatch Selection (STAMPS) and Adaptive STAMPS.
STAMPS are meta-algorithms that build ensembles of selection events of base feature selectors trained on tiny, (ly-adaptive) random subsets of both the observations and features of the data.
Our approaches are general and can be employed with a variety of existing feature selection strategies and machine learning techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Feature selection often leads to increased model interpretability, faster
computation, and improved model performance by discarding irrelevant or
redundant features. While feature selection is a well-studied problem with many
widely-used techniques, there are typically two key challenges: i) many
existing approaches become computationally intractable in huge-data settings
with millions of observations and features; and ii) the statistical accuracy of
selected features degrades in high-noise, high-correlation settings, thus
hindering reliable model interpretation. We tackle these problems by proposing
Stable Minipatch Selection (STAMPS) and Adaptive STAMPS (AdaSTAMPS). These are
meta-algorithms that build ensembles of selection events of base feature
selectors trained on many tiny, (adaptively-chosen) random subsets of both the
observations and features of the data, which we call minipatches. Our
approaches are general and can be employed with a variety of existing feature
selection strategies and machine learning techniques. In addition, we provide
theoretical insights on STAMPS and empirically demonstrate that our approaches,
especially AdaSTAMPS, dominate competing methods in terms of feature selection
accuracy and computational time.
Related papers
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
We propose a novel filter feature selection method, ContrastFS, which selects discriminative features based on the discrepancies features shown between different classes.
We validate effectiveness and efficiency of our approach on several widely studied benchmark datasets, results show that the new method performs favorably with negligible computation.
arXiv Detail & Related papers (2024-01-15T05:32:35Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
Data scientists typically collect as many features as possible into their datasets, and even engineer new features from existing ones.
Existing benchmarks for tabular feature selection consider classical downstream models, toy synthetic datasets, or do not evaluate feature selectors on the basis of downstream performance.
We construct a challenging feature selection benchmark evaluated on downstream neural networks including transformers.
We also propose an input-gradient-based analogue of Lasso for neural networks that outperforms classical feature selection methods on challenging problems.
arXiv Detail & Related papers (2023-11-10T05:26:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Towards Explainable Exploratory Landscape Analysis: Extreme Feature
Selection for Classifying BBOB Functions [4.932130498861987]
We show that a surprisingly small number of features -- often less than four -- can suffice to achieve a 98% accuracy.
We show that the classification accuracy transfers to settings in which several instances are involved in training and testing.
arXiv Detail & Related papers (2021-02-01T10:04:28Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - Robust Multi-class Feature Selection via $l_{2,0}$-Norm Regularization
Minimization [6.41804410246642]
Feature selection is an important computational-processing in data mining and machine learning.
In this paper, a novel method based on homoy hard threshold (HIHT) is proposed to solve the least square problem for multi-class feature selection.
arXiv Detail & Related papers (2020-10-08T02:06:06Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
We propose an embedded feature selection method based on a min-max optimization problem.
By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado.
The efficiency and usefulness of our approach are tested on several benchmark data sets.
arXiv Detail & Related papers (2020-04-21T09:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.