論文の概要: What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions
- arxiv url: http://arxiv.org/abs/2010.08539v2
- Date: Sat, 6 Mar 2021 19:28:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 21:33:44.168715
- Title: What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions
- Title(参考訳): 筋肉から何が学べますか?
人間のインタラクションから視覚表現を学ぶ
- Authors: Kiana Ehsani, Daniel Gordon, Thomas Nguyen, Roozbeh Mottaghi, Ali
Farhadi
- Abstract要約: 視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
- 参考スコア(独自算出の注目度): 50.435861435121915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning effective representations of visual data that generalize to a
variety of downstream tasks has been a long quest for computer vision. Most
representation learning approaches rely solely on visual data such as images or
videos. In this paper, we explore a novel approach, where we use human
interaction and attention cues to investigate whether we can learn better
representations compared to visual-only representations. For this study, we
collect a dataset of human interactions capturing body part movements and gaze
in their daily lives. Our experiments show that our "muscly-supervised"
representation that encodes interaction and attention cues outperforms a
visual-only state-of-the-art method MoCo (He et al.,2020), on a variety of
target tasks: scene classification (semantic), action recognition (temporal),
depth estimation (geometric), dynamics prediction (physics) and walkable
surface estimation (affordance). Our code and dataset are available at:
https://github.com/ehsanik/muscleTorch.
- Abstract(参考訳): 様々な下流タスクに一般化する視覚的データの効果的な表現を学ぶことは、コンピュータビジョンにとって長い探求であった。
ほとんどの表現学習アプローチは、画像やビデオのような視覚データにのみ依存する。
本稿では,視覚のみの表現よりも優れた表現を学習できるかどうかを検討するために,ヒューマンインタラクションとアテンションキューを用いた新しいアプローチを提案する。
本研究では,身体部分の動きを捉え,日常の視線を観察する人間のインタラクションのデータセットを収集する。
実験では,視覚のみの最先端手法であるmoco (he et al.,2020) を,シーン分類 (semantic) ,行動認識 (temporal) ,深さ推定 (geometric) ,動力学予測 (dynamics prediction (physics) および歩行可能表面推定 (walkable surface estimation (affordance) など,様々な対象タスクで上回っている。
私たちのコードとデータセットは以下の通りです。
関連論文リスト
- Semantic-Based Active Perception for Humanoid Visual Tasks with Foveal Sensors [49.99728312519117]
この研究の目的は、最近の意味に基づくアクティブな知覚モデルが、人間が定期的に行う視覚的なタスクをいかに正確に達成できるかを確立することである。
このモデルは、現在のオブジェクト検出器が多数のオブジェクトクラスをローカライズし、分類し、複数の固定にまたがるシーンのセマンティック記述を更新する能力を利用する。
シーン探索の課題では、セマンティック・ベースの手法は従来のサリエンシ・ベース・モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-16T18:15:57Z) - Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
マルチフィンガーハンドの視覚と触覚を組み合わせることで,手動操作時の物体の姿勢と形状を推定する。
提案手法であるNeuralFeelsは,ニューラルネットワークをオンラインで学習することでオブジェクトの形状を符号化し,ポーズグラフ問題を最適化して共同で追跡する。
私たちの結果は、タッチが少なくとも、洗練され、そして最も最良のものは、手動操作中に視覚的推定を曖昧にすることを示しています。
論文 参考訳(メタデータ) (2023-12-20T22:36:37Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Heuristic Vision Pre-Training with Self-Supervised and Supervised
Multi-Task Learning [0.0]
マルチタスク方式で自己教師型と教師型の両方の視覚的プレテキストタスクを採用することで、新しい事前学習フレームワークを提案する。
その結果、事前学習したモデルでは、複数の視覚的タスクにおいて、最先端(SOTA)結果と同等以上の結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-11T14:06:04Z) - Brief Introduction to Contrastive Learning Pretext Tasks for Visual
Representation [0.0]
教師なし学習手法のサブセットであるコントラスト学習を導入する。
対照的な学習の目的は、互いに近くにある同じサンプルから強化されたサンプルを埋め込んで、そうでないサンプルを押し下げることである。
我々は、最近公開されたコントラスト学習の戦略をいくつか提示し、視覚表現のためのプレテキストタスクに焦点を当てている。
論文 参考訳(メタデータ) (2022-10-06T18:54:10Z) - Playful Interactions for Representation Learning [82.59215739257104]
本稿では,下流タスクの視覚的表現を学習するために,遊び心のあるインタラクションを自己指導的に利用することを提案する。
19の多様な環境で2時間の遊び心のあるデータを収集し、自己予測学習を用いて視覚的表現を抽出する。
我々の表現は、標準的な行動クローニングよりも一般化され、必要なデモの半数しか必要とせず、同様の性能を達成できる。
論文 参考訳(メタデータ) (2021-07-19T17:54:48Z) - Physion: Evaluating Physical Prediction from Vision in Humans and
Machines [46.19008633309041]
我々は、この能力を正確に測定する視覚的および身体的予測ベンチマークを示す。
我々は、様々な物理予測を行う能力について、アルゴリズムの配列を比較した。
物理的な状態にアクセス可能なグラフニューラルネットワークは、人間の振る舞いを最もよく捉えている。
論文 参考訳(メタデータ) (2021-06-15T16:13:39Z) - Imitation Learning with Human Eye Gaze via Multi-Objective Prediction [3.5779268406205618]
本稿では,新しい文脈認識型模倣学習アーキテクチャであるGaze Regularized Imitation Learning (GRIL)を提案する。
GRILは人間のデモンストレーションと視線の両方から同時に学習し、視覚的注意が重要なコンテキストを提供するタスクを解決する。
GRILは、最先端の視線に基づく模倣学習アルゴリズムよりも優れており、同時に人間の視覚的注意を予測し、トレーニングデータに存在しないシナリオに一般化する。
論文 参考訳(メタデータ) (2021-02-25T17:13:13Z) - VisualEchoes: Spatial Image Representation Learning through Echolocation [97.23789910400387]
いくつかの動物種(コウモリ、イルカ、クジラなど)や視覚障害者さえもエコーロケーションを行う能力を持っている。
エコーロケーションを用いて有用な視覚特徴を学習する対話型表現学習フレームワークを提案する。
我々の研究は、物理的世界との相互作用によって監督される、エンボディエージェントのための表現学習の新しい道を開く。
論文 参考訳(メタデータ) (2020-05-04T16:16:58Z) - Active Perception and Representation for Robotic Manipulation [0.8315801422499861]
本稿では、能動的知覚の利点を利用して操作タスクを遂行するフレームワークを提案する。
我々のエージェントは、視点変化を利用してオブジェクトをローカライズし、状態表現を自己監督的に学習し、ゴール指向のアクションを実行する。
バニラ深度Q-ラーニングアルゴリズムと比較して、我々のモデルは少なくとも4倍のサンプリング効率がある。
論文 参考訳(メタデータ) (2020-03-15T01:43:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。