Generalizable Machine Learning in Neuroscience using Graph Neural
Networks
- URL: http://arxiv.org/abs/2010.08569v1
- Date: Fri, 16 Oct 2020 18:09:46 GMT
- Title: Generalizable Machine Learning in Neuroscience using Graph Neural
Networks
- Authors: Paul Y. Wang, Sandalika Sapra, Vivek Kurien George, Gabriel A. Silva
- Abstract summary: We show that neural networks perform remarkably well on both neuron-level dynamics prediction, and behavioral state classification.
In our experiments, we found that graph neural networks generally outperformed structure models and excel in generalization on unseen organisms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although a number of studies have explored deep learning in neuroscience, the
application of these algorithms to neural systems on a microscopic scale, i.e.
parameters relevant to lower scales of organization, remains relatively novel.
Motivated by advances in whole-brain imaging, we examined the performance of
deep learning models on microscopic neural dynamics and resulting emergent
behaviors using calcium imaging data from the nematode C. elegans. We show that
neural networks perform remarkably well on both neuron-level dynamics
prediction, and behavioral state classification. In addition, we compared the
performance of structure agnostic neural networks and graph neural networks to
investigate if graph structure can be exploited as a favorable inductive bias.
To perform this experiment, we designed a graph neural network which explicitly
infers relations between neurons from neural activity and leverages the
inferred graph structure during computations. In our experiments, we found that
graph neural networks generally outperformed structure agnostic models and
excel in generalization on unseen organisms, implying a potential path to
generalizable machine learning in neuroscience.
Related papers
- Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.