Graph Neural Operators for Classification of Spatial Transcriptomics
Data
- URL: http://arxiv.org/abs/2302.00658v1
- Date: Wed, 1 Feb 2023 18:32:06 GMT
- Title: Graph Neural Operators for Classification of Spatial Transcriptomics
Data
- Authors: Junaid Ahmed and Alhassan S. Yasin
- Abstract summary: We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
- Score: 1.408706290287121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inception of spatial transcriptomics has allowed improved comprehension
of tissue architectures and the disentanglement of complex underlying
biological, physiological, and pathological processes through their positional
contexts. Recently, these contexts, and by extension the field, have seen much
promise and elucidation with the application of graph learning approaches. In
particular, neural operators have risen in regards to learning the mapping
between infinite-dimensional function spaces. With basic to deep neural network
architectures being data-driven, i.e. dependent on quality data for prediction,
neural operators provide robustness by offering generalization among different
resolutions despite low quality data. Graph neural operators are a variant that
utilize graph networks to learn this mapping between function spaces. The aim
of this research is to identify robust machine learning architectures that
integrate spatial information to predict tissue types. Under this notion, we
propose a study incorporating various graph neural network approaches to
validate the efficacy of applying neural operators towards prediction of brain
regions in mouse brain tissue samples as a proof of concept towards our
purpose. We were able to achieve an F1 score of nearly 72% for the graph neural
operator approach which outperformed all baseline and other graph network
approaches.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics [9.803179588247252]
We introduce NeuroGraph, a collection of graph-based neuroimaging datasets.
We demonstrate its utility for predicting multiple categories of behavioral and cognitive traits.
arXiv Detail & Related papers (2023-06-09T19:10:16Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
We extend previous work on spike-based graph algorithms by demonstrating how symbolic and multi-relational information can be encoded using spiking neurons.
The introduced framework is enabled by combining the graph embedding paradigm and the recent progress in training spiking neural networks using error backpropagation.
arXiv Detail & Related papers (2022-08-04T10:49:34Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Generalizable Machine Learning in Neuroscience using Graph Neural
Networks [0.0]
We show that neural networks perform remarkably well on both neuron-level dynamics prediction, and behavioral state classification.
In our experiments, we found that graph neural networks generally outperformed structure models and excel in generalization on unseen organisms.
arXiv Detail & Related papers (2020-10-16T18:09:46Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.