論文の概要: Zoom-CAM: Generating Fine-grained Pixel Annotations from Image Labels
- arxiv url: http://arxiv.org/abs/2010.08644v1
- Date: Fri, 16 Oct 2020 22:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 21:33:22.389201
- Title: Zoom-CAM: Generating Fine-grained Pixel Annotations from Image Labels
- Title(参考訳): Zoom-CAM:イメージラベルから微細なピクセルアノテーションを生成する
- Authors: Xiangwei Shi, Seyran Khademi, Yunqiang Li, Jan van Gemert
- Abstract要約: Zoom-CAMは、様々な識別クラスのインスタンスに対して、きめ細かい小さなオブジェクトをキャプチャする。
クラスラベルからピクセルレベルの擬似ラベルを生成することに注力する。
弱い教師付きセマンティックセグメンテーションのために、生成した擬似ラベルは、アートモデルの状態を1.1%改善する。
- 参考スコア(独自算出の注目度): 15.664293530106637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current weakly supervised object localization and segmentation rely on
class-discriminative visualization techniques to generate pseudo-labels for
pixel-level training. Such visualization methods, including class activation
mapping (CAM) and Grad-CAM, use only the deepest, lowest resolution
convolutional layer, missing all information in intermediate layers. We propose
Zoom-CAM: going beyond the last lowest resolution layer by integrating the
importance maps over all activations in intermediate layers. Zoom-CAM captures
fine-grained small-scale objects for various discriminative class instances,
which are commonly missed by the baseline visualization methods. We focus on
generating pixel-level pseudo-labels from class labels. The quality of our
pseudo-labels evaluated on the ImageNet localization task exhibits more than
2.8% improvement on top-1 error. For weakly supervised semantic segmentation
our generated pseudo-labels improve a state of the art model by 1.1%.
- Abstract(参考訳): 現在の弱い教師付きオブジェクトのローカライゼーションとセグメンテーションは、ピクセルレベルのトレーニングのために擬似ラベルを生成するためにクラス差別的可視化技術に依存している。
クラスアクティベーションマッピング(CAM)やGrad-CAMといった視覚化手法では、最も深い低解像度の畳み込み層のみを使用し、中間層にすべての情報がない。
中間層におけるすべてのアクティベーション上の重要マップを統合することで、最下位の解像度層を超えるZoom-CAMを提案する。
Zoom-CAMは、様々な識別クラスインスタンスのための細粒度の小さなオブジェクトをキャプチャする。
クラスラベルからピクセルレベルの擬似ラベルを生成することに注力する。
imagenetローカライズタスクで評価した擬似ラベルの品質はtop-1エラーの2.8%以上向上した。
弱い教師付きセマンティックセグメンテーションのために、生成した擬似ラベルは、アートモデルの状態を1.1%改善する。
関連論文リスト
- Learning Camouflaged Object Detection from Noisy Pseudo Label [60.9005578956798]
本稿では,まず,弱い半教師付きカモフラージュオブジェクト検出(COD)法を提案する。
予算効率が高く高精度なカモフラージュされたオブジェクトセグメンテーションを目標とし、完全にラベル付けされた画像が極めて限られている。
本稿では,早期の学習段階において,モデルが正しい画素の学習を容易にするノイズ補正損失を提案する。
完全ラベル付きデータの20%しか使用しない場合,本手法は最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T04:53:51Z) - Segment Anything Model (SAM) Enhanced Pseudo Labels for Weakly
Supervised Semantic Segmentation [30.812323329239614]
弱教師付きセマンティックセマンティックセグメンテーション(WSSS)は、画像レベルのアノテーションのみを使用することで、精細なピクセルレベルのアノテーションの必要性を回避することを目的としている。
既存のほとんどのメソッドは、ピクセルレベルの擬似ラベルを導出するためにクラスアクティベーションマップ(CAM)に依存している。
オブジェクト,部品,サブパートのきめ細かいインスタンスマスクを生成できるクラスに依存しない基礎モデルであるSegment Anything Model (SAM) を利用した,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-05-09T23:24:09Z) - Multi-Granularity Denoising and Bidirectional Alignment for Weakly
Supervised Semantic Segmentation [75.32213865436442]
本稿では,雑音ラベルと多クラス一般化問題を緩和するために,MDBAモデルを提案する。
MDBAモデルはPASCAL VOC 2012データセットの検証とテストセットにおいて69.5%と70.2%のmIoUに達することができる。
論文 参考訳(メタデータ) (2023-05-09T03:33:43Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly
Supervised Semantic Segmentation [66.87777732230884]
本稿では,活性化対象領域の拡大を支援するために,Salliency Guided Inter-およびIntra-Class Relation Constrained (I$2$CRC) フレームワークを提案する。
また,オブジェクトガイド付きラベルリファインメントモジュールを導入し,セグメンテーション予測と初期ラベルをフル活用し,優れた擬似ラベルを得る。
論文 参考訳(メタデータ) (2022-06-20T03:40:56Z) - Inferring the Class Conditional Response Map for Weakly Supervised
Semantic Segmentation [27.269847900950943]
そこで我々は,より優れた擬似ラベルを生成するために,クラス条件推論戦略とアクティベーション対応マスク精細化損失関数を提案する。
本手法は,分類器の再学習を必要とせず,優れたWSSS結果が得られる。
論文 参考訳(メタデータ) (2021-10-27T09:43:40Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
超高解像度画像のための混合監視学習フレームワークを提案する。
パッチトレーニングの段階では、このフレームワークは、粗いイメージレベルのラベルを使用して、自己教師付き学習を洗練することができる。
画素レベルの偽陽性と偽陰性を抑制するための包括的な戦略が提案されている。
論文 参考訳(メタデータ) (2021-07-02T09:46:06Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。