論文の概要: ArCOV19-Rumors: Arabic COVID-19 Twitter Dataset for Misinformation
Detection
- arxiv url: http://arxiv.org/abs/2010.08768v2
- Date: Sat, 13 Mar 2021 20:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 12:04:14.260775
- Title: ArCOV19-Rumors: Arabic COVID-19 Twitter Dataset for Misinformation
Detection
- Title(参考訳): ArCOV19:誤情報検出のためのアラビアのTwitterデータセット
- Authors: Fatima Haouari, Maram Hasanain, Reem Suwaileh, Tamer Elsayed
- Abstract要約: ArCOV19-Rumorsは、1月27日から2020年4月末までのクレームを含むツイートからなる誤情報検出のためのアラビア語のTwitterデータセットである。
本誌は138件の確認済みのクレームを、主に人気ファクトチェックサイトから収集し、それらのクレームに関連する9.4万件のツイートを特定した。
ツイートは、パンデミックで直面した主要な問題の一つである誤情報検出の研究を支援するために、正確さで手動で注釈付けされた。
- 参考スコア(独自算出の注目度): 6.688963029270579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce ArCOV19-Rumors, an Arabic COVID-19 Twitter dataset
for misinformation detection composed of tweets containing claims from 27th
January till the end of April 2020. We collected 138 verified claims, mostly
from popular fact-checking websites, and identified 9.4K relevant tweets to
those claims. Tweets were manually-annotated by veracity to support research on
misinformation detection, which is one of the major problems faced during a
pandemic. ArCOV19-Rumors supports two levels of misinformation detection over
Twitter: verifying free-text claims (called claim-level verification) and
verifying claims expressed in tweets (called tweet-level verification). Our
dataset covers, in addition to health, claims related to other topical
categories that were influenced by COVID-19, namely, social, politics, sports,
entertainment, and religious. Moreover, we present benchmarking results for
tweet-level verification on the dataset. We experimented with SOTA models of
versatile approaches that either exploit content, user profiles features,
temporal features and propagation structure of the conversational threads for
tweet verification.
- Abstract(参考訳): 本稿では,2020年1月27日から4月末までのクレームを含むツイートからなる誤情報検出のためのアラビア語のtwitterデータセットarcov19-rumorsを紹介する。
本誌は138件の認証されたクレームを、主に人気ファクトチェックwebサイトから集め、9.4kの関連ツイートをそれらのクレームに特定した。
ツイートは、パンデミックで直面する大きな問題の一つである誤情報検出の研究を支援するために、正確さで手動で注釈付けされた。
フリーテキストクレーム(クレームレベル検証と呼ばれる)の検証と、ツイートで表現されたクレーム(ツイートレベル検証と呼ばれる)の検証である。
私たちのデータセットは、健康に加えて、COVID-19の影響を受けている他のカテゴリー、すなわち社会、政治、スポーツ、エンターテイメント、宗教に関する主張もカバーしています。
さらに,データセット上でのツィートレベル検証のためのベンチマーク結果も提示する。
我々は,コンテンツ,ユーザプロファイル機能,時間的特徴,ツイート検証のための会話スレッドの伝播構造を利用する多用途アプローチのsotaモデルを実験した。
関連論文リスト
- Twitter Dataset on the Russo-Ukrainian War [68.713984286035]
Twitter APIから現在進行中のデータセットの取得を開始しています。
データセットは770万人のユーザーを起源とする5730万ツイートに達している。
我々は、最初のボリュームと感情分析を適用し、データセットはトピック分析、ヘイトスピーチ、プロパガンダ認識、ボットネットのような潜在的な悪意のあるエンティティを示すためにさらに探索的な調査に使用することができる。
論文 参考訳(メタデータ) (2022-04-07T12:33:06Z) - Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal
Misinformation [83.2079454464572]
本稿では,DARPAセマンティック・フォレスティクス(SemaFor)プログラムにおける画像テキスト不整合検出へのアプローチについて述べる。
Twitter-COMMsは大規模マルチモーダルデータセットで、884万のツイートが気候変動、新型コロナウイルス、軍用車両のトピックに関連する。
我々は、最先端のCLIPモデルに基づいて、自動生成されたランダムとハードのネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガ
論文 参考訳(メタデータ) (2021-12-16T03:37:20Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - FaVIQ: FAct Verification from Information-seeking Questions [77.7067957445298]
実ユーザによる情報探索質問を用いて,ファVIQと呼ばれる大規模事実検証データセットを構築した。
我々の主張は自然であると証明され、語彙バイアスがほとんどなく、検証の証拠を完全に理解する必要がある。
論文 参考訳(メタデータ) (2021-07-05T17:31:44Z) - Understanding Information Spreading Mechanisms During COVID-19 Pandemic
by Analyzing the Impact of Tweet Text and User Features for Retweet
Prediction [6.658785818853953]
新型コロナウイルスは世界の経済や、ほぼすべての人々の日常生活に影響を与えている。
ソーシャルメディアプラットフォームは、情報を共有できる他のユーザーと情報を共有できる。
CNNとRNNをベースとした2つのモデルを提案し、これらのモデルの性能を公開のTweetsCOV19データセットで評価する。
論文 参考訳(メタデータ) (2021-05-26T15:55:58Z) - CML-COVID: A Large-Scale COVID-19 Twitter Dataset with Latent Topics,
Sentiment and Location Information [0.0]
CML-COVID(CML-COVID)は、新型コロナウイルス(COVID-19)による5,977,653人のツイート19,298,967万件のTwitterデータセットである。
これらのツイートは、2020年3月から7月にかけて、新型コロナウイルスに関連する質問文、コビッド、マスクを使って収集された。
論文 参考訳(メタデータ) (2021-01-28T18:59:10Z) - Predicting Misinformation and Engagement in COVID-19 Twitter Discourse
in the First Months of the Outbreak [1.2059055685264957]
新型コロナウイルス(COVID-19)関連ツイート50万件近くを調べ、ボット行動とエンゲージメントの機能として誤情報を理解する。
実際のユーザーは事実と誤情報の両方をツイートし、ボットは偽情報よりも比例的にツイートしていることがわかった。
論文 参考訳(メタデータ) (2020-12-03T18:47:34Z) - The Role of the Crowd in Countering Misinformation: A Case Study of the
COVID-19 Infodemic [15.885290526721544]
我々は、新型コロナウイルスのパンデミックに関連するツイート、誤報の拡散、プロの事実確認、そして新型コロナウイルスに関する一般的な誤解を招く主張に対する大衆の反応を分析することに重点を置いている。
我々は分類器を訓練して155,468件のCOVID-19関連ツイートのデータセットを作成し、33,237件の虚偽の主張と33,413件の反論を含む。
我々は、誤報ツイートの急増が、そうした誤報を否定する速報とそれに対応するツイートの増加をもたらすことを観察する。
論文 参考訳(メタデータ) (2020-11-11T13:48:44Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
われわれは、2020年3月1日から4月30日まで、米国で4万2000人以上のユニークTwitterユーザーによる嫌がらせと反嫌悪のパターンを分析した。
ホアーディンググループと反ホアーディンググループの両方の女性の比率が、一般のTwitter利用者の比率よりも高いことがわかりました。
LIWCの不安度はTwitterの不安度よりもかなり高い。
論文 参考訳(メタデータ) (2020-10-15T16:02:25Z) - Misinformation Has High Perplexity [55.47422012881148]
疑似クレームを教師なしの方法でデバンクするために, 難易度を活用することを提案する。
まず,これらの主張に類似した文に基づいて,科学的およびニュースソースから信頼性のある証拠を抽出する。
第2に,抽出したエビデンスを言語モデルにプライマリし,難易度スコアに基づいて与えられたクレームの正当性を評価する。
論文 参考訳(メタデータ) (2020-06-08T15:13:44Z) - An Exploratory Study of COVID-19 Misinformation on Twitter [5.070542698701158]
新型コロナウイルス(COVID-19)パンデミックの間、ソーシャルメディアは誤報の本拠地となっている。
新型コロナウイルスの話題に関して,Twitter上での誤報の伝播,著者,内容に関する探索的研究を行った。
論文 参考訳(メタデータ) (2020-05-12T12:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。