Meta-path Free Semi-supervised Learning for Heterogeneous Networks
- URL: http://arxiv.org/abs/2010.08924v2
- Date: Wed, 6 Jan 2021 23:54:30 GMT
- Title: Meta-path Free Semi-supervised Learning for Heterogeneous Networks
- Authors: Shin-woo Park, Byung Jun Bae, Jinyoung Yeo, Seung-won Hwang
- Abstract summary: Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved superior performance in tasks such as node classification.
In this paper, we propose simple and effective graph neural networks for heterogeneous graph, excluding the use of meta-paths.
- Score: 16.641434334366227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been widely used in representation learning
on graphs and achieved superior performance in tasks such as node
classification. However, analyzing heterogeneous graph of different types of
nodes and links still brings great challenges for injecting the heterogeneity
into a graph neural network. A general remedy is to manually or automatically
design meta-paths to transform a heterogeneous graph into a homogeneous graph,
but this is suboptimal since the features from the first-order neighbors are
not fully leveraged for training and inference. In this paper, we propose
simple and effective graph neural networks for heterogeneous graph, excluding
the use of meta-paths. Specifically, our models focus on relaxing the
heterogeneity stress for model parameters by expanding model capacity of
general GNNs in an effective way. Extensive experimental results on six
real-world graphs not only show the superior performance of our proposed models
over the state-of-the-arts, but also demonstrate the potentially good balance
between reducing the heterogeneity stress and increasing the parameter size.
Our code is freely available for reproducing our results.
Related papers
- Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
Graph neural networks learn to represent nodes by aggregating information from their neighbors.
Several existing methods address this by sampling a small subset of nodes, scaling GNNs to much larger graphs.
We introduce GRAPES, an adaptive sampling method that learns to identify the set of nodes crucial for training a GNN.
arXiv Detail & Related papers (2023-10-05T09:08:47Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - GCNH: A Simple Method For Representation Learning On Heterophilous
Graphs [4.051099980410583]
Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs.
Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs.
We propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios.
arXiv Detail & Related papers (2023-04-21T11:26:24Z) - RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs [26.191673964156585]
We propose a novel Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO) for large-scale heterogeneous graph representation learning.
RHCO achieves best performance over the state-of-the-art models.
arXiv Detail & Related papers (2022-11-20T04:45:04Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach [43.41163711340362]
We propose a method named Deep Heterophily Graph Rewiring (DHGR) to rewire graphs by adding homophilic edges and pruning heterophilic edges.
To the best of our knowledge, it is the first work studying graph rewiring for heterophily graphs.
arXiv Detail & Related papers (2022-09-17T06:55:21Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Heterogeneous Graph Transformer [49.675064816860505]
Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs.
To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT.
To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training.
arXiv Detail & Related papers (2020-03-03T04:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.