RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs
- URL: http://arxiv.org/abs/2211.11752v1
- Date: Sun, 20 Nov 2022 04:45:04 GMT
- Title: RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs
- Authors: Ziming Wan, Deqing Wang, Xuehua Ming, Fuzhen Zhuang, Chenguang Du,
Ting Jiang, Zhengyang Zhao
- Abstract summary: We propose a novel Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO) for large-scale heterogeneous graph representation learning.
RHCO achieves best performance over the state-of-the-art models.
- Score: 26.191673964156585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graph neural networks (HGNNs) have been widely applied in
heterogeneous information network tasks, while most HGNNs suffer from poor
scalability or weak representation when they are applied to large-scale
heterogeneous graphs. To address these problems, we propose a novel
Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning
(RHCO) for large-scale heterogeneous graph representation learning. Unlike
traditional heterogeneous graph neural networks, we adopt the contrastive
learning mechanism to deal with the complex heterogeneity of large-scale
heterogeneous graphs. We first learn relation-aware node embeddings under the
network schema view. Then we propose a novel positive sample selection strategy
to choose meaningful positive samples. After learning node embeddings under the
positive sample graph view, we perform a cross-view contrastive learning to
obtain the final node representations. Moreover, we adopt the label smoothing
technique to boost the performance of RHCO. Extensive experiments on three
large-scale academic heterogeneous graph datasets show that RHCO achieves best
performance over the state-of-the-art models.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Generative-Enhanced Heterogeneous Graph Contrastive Learning [11.118517297006894]
Heterogeneous Graphs (HGs) can effectively model complex relationships in the real world by multi-type nodes and edges.
In recent years, inspired by self-supervised learning, contrastive Heterogeneous Graphs Neural Networks (HGNNs) have shown great potential by utilizing data augmentation and contrastive discriminators for downstream tasks.
We propose a novel Generative-Enhanced Heterogeneous Graph Contrastive Learning (GHGCL)
arXiv Detail & Related papers (2024-04-03T15:31:18Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Meta-path Free Semi-supervised Learning for Heterogeneous Networks [16.641434334366227]
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved superior performance in tasks such as node classification.
In this paper, we propose simple and effective graph neural networks for heterogeneous graph, excluding the use of meta-paths.
arXiv Detail & Related papers (2020-10-18T06:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.