論文の概要: Model-Based Inverse Reinforcement Learning from Visual Demonstrations
- arxiv url: http://arxiv.org/abs/2010.09034v2
- Date: Wed, 6 Jan 2021 19:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 04:31:18.643866
- Title: Model-Based Inverse Reinforcement Learning from Visual Demonstrations
- Title(参考訳): 実演によるモデルベース逆強化学習
- Authors: Neha Das and Sarah Bechtle and Todor Davchev and Dinesh Jayaraman and
Akshara Rai and Franziska Meier
- Abstract要約: 本稿では,視覚的人間の実演のみを与えられた場合のコスト関数を学習する,勾配に基づく逆強化学習フレームワークを提案する。
学習したコスト関数は、視覚モデル予測制御によって実証された振る舞いを再現するために使用される。
2つの基本的なオブジェクト操作タスクでハードウェアのフレームワークを評価する。
- 参考スコア(独自算出の注目度): 20.23223474119314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling model-based inverse reinforcement learning (IRL) to real robotic
manipulation tasks with unknown dynamics remains an open problem. The key
challenges lie in learning good dynamics models, developing algorithms that
scale to high-dimensional state-spaces and being able to learn from both visual
and proprioceptive demonstrations. In this work, we present a gradient-based
inverse reinforcement learning framework that utilizes a pre-trained visual
dynamics model to learn cost functions when given only visual human
demonstrations. The learned cost functions are then used to reproduce the
demonstrated behavior via visual model predictive control. We evaluate our
framework on hardware on two basic object manipulation tasks.
- Abstract(参考訳): 未知のダイナミクスを持つ実際のロボット操作タスクへのモデルベース逆強化学習(irl)のスケーリングは、まだ未解決の問題である。
重要な課題は、優れたダイナミクスモデルを学び、高次元の状態空間にスケールするアルゴリズムを開発し、視覚的および固有的なデモンストレーションから学ぶことができることだ。
本研究では,事前学習された視覚力学モデルを用いて,視覚人間によるデモンストレーションのみを与えられた場合のコスト関数を学習する,勾配に基づく逆強化学習フレームワークを提案する。
学習したコスト関数は、視覚モデル予測制御によって実証された振る舞いを再現するために使用される。
2つの基本的なオブジェクト操作タスクでハードウェアのフレームワークを評価する。
関連論文リスト
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamicsは、画素入力からオブジェクト中心の動的モデルを学ぶ新しいアルゴリズムである。
構造化潜在空間は、モデル解釈可能性を改善するだけでなく、振る舞いモデルが推論する価値のある入力空間も提供することを実証する。
以上の結果から,SOLDは,最先端のモデルベースRLアルゴリズムであるDreamerV3よりも,さまざまなベンチマークロボット環境において優れていた。
論文 参考訳(メタデータ) (2024-10-11T14:03:31Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Masked World Models for Visual Control [90.13638482124567]
視覚表現学習と動的学習を分離する視覚モデルに基づくRLフレームワークを提案する。
提案手法は,様々な視覚ロボット作業における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-06-28T18:42:27Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
我々は2次元視覚観測から動的3次元シーンのモデルを純粋に学習する。
学習した表現空間上に構築された動的モデルにより,操作課題に対するビジュモータ制御が可能となる。
論文 参考訳(メタデータ) (2021-07-08T17:49:37Z) - Learning Visible Connectivity Dynamics for Cloth Smoothing [17.24004979796887]
本稿では,部分点雲観測から粒子動力学モデルを学ぶことを提案する。
部分観測可能性の課題を克服するため, 基盤となる布網上にどの可視点が接続されているのかを推定する。
提案手法は,従来のモデルベースおよびモデルフリー強化学習法をシミュレーションで大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-21T15:03:29Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
視覚表現モデルと動的モデルの両方を協調的に最適化する新しい学習フレームワークを提案する。
我々は,標準モデルに基づく学習手法をロープや布の操作スイートで大幅に改善した。
論文 参考訳(メタデータ) (2020-03-11T17:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。