論文の概要: Dos and Don'ts of Machine Learning in Computer Security
- arxiv url: http://arxiv.org/abs/2010.09470v2
- Date: Tue, 30 Nov 2021 10:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 23:08:57.499942
- Title: Dos and Don'ts of Machine Learning in Computer Security
- Title(参考訳): コンピュータセキュリティにおける機械学習のdosとdon'ts
- Authors: Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,
Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, Konrad Rieck
- Abstract要約: 大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
- 参考スコア(独自算出の注目度): 74.1816306998445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing processing power of computing systems and the increasing
availability of massive datasets, machine learning algorithms have led to major
breakthroughs in many different areas. This development has influenced computer
security, spawning a series of work on learning-based security systems, such as
for malware detection, vulnerability discovery, and binary code analysis.
Despite great potential, machine learning in security is prone to subtle
pitfalls that undermine its performance and render learning-based systems
potentially unsuitable for security tasks and practical deployment. In this
paper, we look at this problem with critical eyes. First, we identify common
pitfalls in the design, implementation, and evaluation of learning-based
security systems. We conduct a study of 30 papers from top-tier security
conferences within the past 10 years, confirming that these pitfalls are
widespread in the current security literature. In an empirical analysis, we
further demonstrate how individual pitfalls can lead to unrealistic performance
and interpretations, obstructing the understanding of the security problem at
hand. As a remedy, we propose actionable recommendations to support researchers
in avoiding or mitigating the pitfalls where possible. Furthermore, we identify
open problems when applying machine learning in security and provide directions
for further research.
- Abstract(参考訳): コンピューティングシステムの処理能力の増大と大量のデータセットの可用性の向上により、機械学習アルゴリズムは多くの分野で大きなブレークスルーをもたらしている。
この開発はコンピュータセキュリティに影響を与え、マルウェアの検出、脆弱性発見、バイナリコード解析など、学習ベースのセキュリティシステムに関する一連の研究を生み出した。
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴があり、セキュリティタスクや実践的なデプロイメントには適さない学習ベースのシステムをレンダリングする。
本稿では、この問題を批判的な目で考察する。
まず,学習ベースのセキュリティシステムの設計,実装,評価に共通する落とし穴を明らかにする。
我々は過去10年間に上位レベルのセキュリティ会議から30の論文を調査し、これらの落とし穴が現在のセキュリティ文献に広まっていることを確認した。
実証分析では、個々の落とし穴が非現実的なパフォーマンスや解釈にどのように結びつくかを示し、目の前のセキュリティ問題の理解を妨げる。
本稿では,この落とし穴を回避・緩和する上で,研究者を支援するための実用的な勧告を提案する。
さらに,機械学習をセキュリティに適用する場合のオープンな問題を特定し,さらなる研究の方向性を示す。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
堅牢なサイバーセキュリティ防衛の統合は、ソフトウェア開発のあらゆる段階において不可欠になっている。
ソフトウェア要件プロセスにおけるこれらの初期段階の脆弱性の検出にトピックモデリングと機械学習を活用する試みが実施されている。
論文 参考訳(メタデータ) (2023-11-01T17:46:07Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Security for Machine Learning-based Software Systems: a survey of
threats, practices and challenges [0.76146285961466]
機械学習ベースのモダンソフトウェアシステム(MLBSS)を安全に開発する方法は、依然として大きな課題である。
潜伏中の脆弱性と、外部のユーザーや攻撃者に暴露されるプライバシー問題は、ほとんど無視され、特定が難しい。
機械学習ベースのソフトウェアシステムのセキュリティは、固有のシステム欠陥や外敵攻撃から生じる可能性があると考えている。
論文 参考訳(メタデータ) (2022-01-12T23:20:25Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Security and Machine Learning in the Real World [33.40597438876848]
私たちは、大規模にデプロイされた機械学習ソフトウェア製品のセキュリティを評価し、システムのセキュリティビューを含む会話を広げるために、私たちの経験に基づいています。
本稿では,機械学習モジュールをデプロイする実践者がシステムを保護するために使用できる,短期的な緩和提案のリストを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:57:12Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - A Review of Computer Vision Methods in Network Security [11.380790116533912]
ネットワークセキュリティはこれまで以上に重要な領域となっている。
従来の機械学習手法は、ネットワークセキュリティの文脈で頻繁に用いられてきた。
近年、コンピュータビジョンの驚異的な成長は、主に畳み込みニューラルネットワークの領域の進歩によって引き起こされた。
論文 参考訳(メタデータ) (2020-05-07T08:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。