論文の概要: Multi-Stage Fusion for One-Click Segmentation
- arxiv url: http://arxiv.org/abs/2010.09672v2
- Date: Tue, 20 Oct 2020 12:52:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 22:16:18.040743
- Title: Multi-Stage Fusion for One-Click Segmentation
- Title(参考訳): ワンクリックセグメンテーションのための多段融合
- Authors: Soumajit Majumder, Ansh Khurana, Abhinav Rai, Angela Yao
- Abstract要約: 対話型セグメンテーションのための多段階ガイダンスフレームワークを提案する。
提案フレームワークは,早期融合フレームワークと比較してパラメータ数の増加は無視できない。
- 参考スコア(独自算出の注目度): 20.00726292545008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmenting objects of interest in an image is an essential building block of
applications such as photo-editing and image analysis. Under interactive
settings, one should achieve good segmentations while minimizing user input.
Current deep learning-based interactive segmentation approaches use early
fusion and incorporate user cues at the image input layer. Since segmentation
CNNs have many layers, early fusion may weaken the influence of user
interactions on the final prediction results. As such, we propose a new
multi-stage guidance framework for interactive segmentation. By incorporating
user cues at different stages of the network, we allow user interactions to
impact the final segmentation output in a more direct way. Our proposed
framework has a negligible increase in parameter count compared to early-fusion
frameworks. We perform extensive experimentation on the standard interactive
instance segmentation and one-click segmentation benchmarks and report
state-of-the-art performance.
- Abstract(参考訳): 画像に対する関心オブジェクトのセグメンテーションは、写真編集や画像解析のようなアプリケーションの重要な構成要素である。
インタラクティブな設定では、ユーザの入力を最小限に抑えながら、良好なセグメンテーションを達成する必要がある。
現在のディープラーニングベースのインタラクティブセグメンテーションアプローチでは、早期融合を使用して、画像入力層にユーザヒントを組み込む。
セグメンテーションcnnは多数の層を有するため、初期の融合は最終予測結果に対するユーザインタラクションの影響を弱める可能性がある。
そこで本研究では,対話型セグメンテーションのための多段階ガイダンスフレームワークを提案する。
ネットワークの異なるステージでユーザキューを組み込むことにより、ユーザインタラクションが最終セグメント出力により直接的な方法で影響を与えることができる。
提案フレームワークは,早期融合フレームワークと比較してパラメータ数の増加は無視できない。
標準対話型インスタンスセグメンテーションとワンクリックセグメンテーションベンチマークの広範な実験を行い,最新性能を報告する。
関連論文リスト
- Learning from Exemplars for Interactive Image Segmentation [15.37506525730218]
同一カテゴリにおける1つのオブジェクトと複数のオブジェクトの両方に対して、新しい対話的セグメンテーションフレームワークを導入する。
当社のモデルでは,ターゲットIoUの85%と90%を達成するために,クリック数が2回削減されるため,ユーザの労力を約15%削減する。
論文 参考訳(メタデータ) (2024-06-17T12:38:01Z) - IFSENet : Harnessing Sparse Iterations for Interactive Few-shot Segmentation Excellence [2.822194296769473]
新しいクラスのセグメンテーションを学ぶために必要な画像の数を減らします。
インタラクティブなセグメンテーション技術は、一度に1つのオブジェクトのセグメンテーションを漸進的に改善することのみに焦点を当てます。
2つの概念を組み合わせることで、新しいクラスのセグメンテーションモデルをトレーニングするのに要する労力を大幅に削減する。
論文 参考訳(メタデータ) (2024-03-22T10:15:53Z) - Refining Segmentation On-the-Fly: An Interactive Framework for Point
Cloud Semantic Segmentation [9.832150567595718]
ポイントクラウドセマンティックセマンティックセグメンテーションのための最初の対話型フレームワークであるInterPCSegを提示する。
本研究では,対話型ポイントクラウドセマンティックセマンティックセグメンテーションタスクに適したインタラクションシミュレーション手法を開発した。
市販セグメンテーションネットワークを用いたS3DISおよびScanNetデータセットのフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-03-11T03:24:58Z) - Multi-interactive Feature Learning and a Full-time Multi-modality
Benchmark for Image Fusion and Segmentation [66.15246197473897]
多モード画像融合とセグメンテーションは、自律走行とロボット操作において重要な役割を果たす。
画像融合とtextbfSegmentation のための textbfMulti-textbfinteractive textbfFeature Learning アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:03:58Z) - DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive
Segmentation Transformer [58.95404214273222]
最先端のインスタンスセグメンテーション手法の多くは、訓練のために大量のピクセル精度のグランドトルースに依存している。
ユーザインタラクションを時間的クエリとして表現するDynaMITeという,より効率的なアプローチを導入する。
我々のアーキテクチャはまた、改善中にイメージ機能を再計算する必要をなくし、単一のイメージに複数のインスタンスをセグメント化するためのインタラクションを少なくする。
論文 参考訳(メタデータ) (2023-04-13T16:57:02Z) - InterFormer: Real-time Interactive Image Segmentation [80.45763765116175]
インタラクティブなイメージセグメンテーションにより、アノテータはセグメンテーションタスクのためのピクセルレベルのアノテーションを効率的に実行することができる。
既存のインタラクティブセグメンテーションパイプラインは、インタラクティブモデルの非効率な計算に悩まされている。
これらの問題に対処するための新しいパイプラインに従うInterFormerという手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T08:57:00Z) - Temporal Segment Transformer for Action Segmentation [54.25103250496069]
本稿では,テキスト・セグメント・トランスフォーマ (textittemporal segment transformer) と呼ぶアテンション・ベース・アプローチを提案する。
主な考え方は、セグメントとフレームの間の注意を用いてセグメント表現を識別することであり、またセグメント間の時間的相関を捉えるためにセグメント間注意を用いる。
このアーキテクチャは,50Salads,GTEA,Breakfastのベンチマークにおいて,最先端の精度を実現していることを示す。
論文 参考訳(メタデータ) (2023-02-25T13:05:57Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - Reviving Iterative Training with Mask Guidance for Interactive
Segmentation [8.271859911016719]
クリックに基づくインタラクティブセグメンテーションに関する最近の研究は、様々な推論時間最適化スキームを用いて最先端の結果を示している。
従来のステップのセグメンテーションマスクを用いた,クリックベースのインタラクティブセグメンテーションのための簡単なフィードフォワードモデルを提案する。
COCOとLVISの組み合わせで訓練されたモデルと、多様で高品質のアノテーションは、既存のすべてのモデルよりも優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:44:31Z) - Rethinking Interactive Image Segmentation: Feature Space Annotation [68.8204255655161]
本稿では,特徴空間投影による複数画像からの対話的・同時セグメントアノテーションを提案する。
本手法は,前景セグメンテーションデータセットにおける最先端手法の精度を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-01-12T10:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。