Resonant enhancement of three-body loss between strongly interacting
photons
- URL: http://arxiv.org/abs/2010.09772v1
- Date: Mon, 19 Oct 2020 18:21:49 GMT
- Title: Resonant enhancement of three-body loss between strongly interacting
photons
- Authors: Marcin Kalinowski, Yidan Wang, Przemyslaw Bienias, Michael J. Gullans,
Dalia P. Ornelas-Huerta, Alexander N. Craddock, Steven L. Rolston, J. V.
Porto, Hans Peter B\"uchler, Alexey V. Gorshkov
- Abstract summary: Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions.
We show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons.
- Score: 47.30557822621873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg polaritons provide an example of a rare type of system where
three-body interactions can be as strong or even stronger than two-body
interactions. The three-body interactions can be either dispersive or
dissipative, with both types possibly giving rise to exotic,
strongly-interacting, and topological phases of matter. Despite past
theoretical and experimental studies of the regime with dispersive interaction,
the dissipative regime is still mostly unexplored. Using a renormalization
group technique to solve the three-body Schr\"odinger equation, we show how the
shape and strength of dissipative three-body forces can be universally enhanced
for Rydberg polaritons. We demonstrate how these interactions relate to the
transmission through a single-mode cavity, which can be used as a probe of the
three-body physics in current experiments.
Related papers
- Quantum Many-Body Scars in Few-Body Dipole-Dipole Interactions [0.0]
We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body interactions.
We study the initial state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates.
arXiv Detail & Related papers (2022-08-04T22:13:12Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning of dipolar interactions and evaporative cooling in a
three-dimensional molecular quantum gas [2.409938612878261]
We demonstrate tunable elastic dipolar interactions in a bulk gas of ultracold 40K87Rb molecules in 3D.
This improvement in the ratio of elastic to inelastic collisions enables direct thermalization.
We achieve evaporative cooling mediated by the dipolar interactions in three dimensions.
arXiv Detail & Related papers (2021-03-10T18:27:48Z) - Tunable three-body loss in a nonlinear Rydberg medium [45.82374977939355]
Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions.
We study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings.
arXiv Detail & Related papers (2020-09-28T19:58:00Z) - Interplay between coherent and dissipative dynamics of bosonic doublons
in an optical lattice [0.0]
We study how three-body losses contribute to the lattice dynamics.
We observe rapid break-up of bound pairs for weak interactions, and for stronger interactions we see doublon decay rates that are asymmetric.
arXiv Detail & Related papers (2020-05-19T21:31:59Z) - Two-body quench dynamics of harmonically trapped interacting particles [0.0]
We consider the quantum evolution of a pair of interacting atoms in a three dimensional isotropic trap.
We show that when the interaction is quenched from the non-interacting to strongly interacting regimes the early time dependence dynamics are consistent with theoretical work in the single impurity many-body limit.
arXiv Detail & Related papers (2020-05-04T02:11:44Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.