Tunable three-body loss in a nonlinear Rydberg medium
- URL: http://arxiv.org/abs/2009.13599v1
- Date: Mon, 28 Sep 2020 19:58:00 GMT
- Title: Tunable three-body loss in a nonlinear Rydberg medium
- Authors: Dalia P. Ornelas Huerta, Przemyslaw Bienias, Alexander N. Craddock,
Michael J. Gullans, Andrew J.Hachtel, Marcin Kalinowski, Mary E. Lyon, Alexey
V. Gorshkov, Steven L. Rolston, and J. V. Porto
- Abstract summary: Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions.
We study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings.
- Score: 45.82374977939355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-range Rydberg interactions, in combination with electromagnetically
induced transparency (EIT), give rise to strongly interacting photons where the
strength, sign, and form of the interactions are widely tunable and
controllable. Such control can be applied to both coherent and dissipative
interactions, which provides the potential to generate novel few-photon states.
Recently it has been shown that Rydberg-EIT is a rare system in which
three-body interactions can be as strong or stronger than two-body
interactions. In this work, we study a three-body scattering loss for
Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical
simulations of the full three-body wavefunction and analytical estimates based
on Fermi's Golden Rule strongly suggest that the observed features in the
outgoing photonic correlations are caused by the resonant enhancement of the
three-body losses.
Related papers
- Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Photon-photon interactions in Rydberg-atom arrays [0.4129225533930965]
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states.
Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
arXiv Detail & Related papers (2021-01-27T13:17:40Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Resonant enhancement of three-body loss between strongly interacting
photons [47.30557822621873]
Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions.
We show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons.
arXiv Detail & Related papers (2020-10-19T18:21:49Z) - Interplay between coherent and dissipative dynamics of bosonic doublons
in an optical lattice [0.0]
We study how three-body losses contribute to the lattice dynamics.
We observe rapid break-up of bound pairs for weak interactions, and for stronger interactions we see doublon decay rates that are asymmetric.
arXiv Detail & Related papers (2020-05-19T21:31:59Z) - Long-range multi-body interactions and three-body anti-blockade in a
trapped Rydberg ion chain [6.431584269935996]
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing.
We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions.
Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics.
arXiv Detail & Related papers (2020-05-12T12:41:10Z) - Self-induced transparency in warm and strongly interacting Rydberg gases [1.433758865948252]
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect.
In this regime, self-induced transparency emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction.
arXiv Detail & Related papers (2020-04-28T16:16:01Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.