論文の概要: Online Active Model Selection for Pre-trained Classifiers
- arxiv url: http://arxiv.org/abs/2010.09818v3
- Date: Sat, 17 Apr 2021 14:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 21:04:51.430973
- Title: Online Active Model Selection for Pre-trained Classifiers
- Title(参考訳): 事前学習した分類器のオンラインアクティブモデル選択
- Authors: Mohammad Reza Karimi, Nezihe Merve G\"urel, Bojan Karla\v{s}, Johannes
Rausch, Ce Zhang and Andreas Krause
- Abstract要約: 我々は,任意のラウンドにおいて高い確率で最良のモデルをラベル付けし,出力する情報的サンプルを積極的に選択するオンライン選択的サンプリング手法を設計する。
我々のアルゴリズムは、敵とストリームの両方のオンライン予測タスクに利用できる。
- 参考スコア(独自算出の注目度): 72.84853880948894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given $k$ pre-trained classifiers and a stream of unlabeled data examples,
how can we actively decide when to query a label so that we can distinguish the
best model from the rest while making a small number of queries? Answering this
question has a profound impact on a range of practical scenarios. In this work,
we design an online selective sampling approach that actively selects
informative examples to label and outputs the best model with high probability
at any round. Our algorithm can be used for online prediction tasks for both
adversarial and stochastic streams. We establish several theoretical guarantees
for our algorithm and extensively demonstrate its effectiveness in our
experimental studies.
- Abstract(参考訳): 事前訓練済みの分類器とラベルなしのデータ例のストリームが与えられたら、ラベルをいつクエリするかを積極的に決めて、クエリを少数作成しながら、最良のモデルを他のものと区別できるのでしょうか?
この質問に答えることは、様々な実践的なシナリオに重大な影響を与える。
本研究では,任意のラウンドにおいて最適なモデルをラベル付けし,高い確率で出力するオンライン選択的サンプリング手法を考案する。
本アルゴリズムは,逆ストリームと確率ストリームの両方のオンライン予測タスクに使用できる。
我々は,アルゴリズムの理論的保証を確立し,その有効性を実験で広く実証する。
関連論文リスト
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Leveraging Importance Weights in Subset Selection [45.54597544672441]
本稿では,任意のモデルファミリを実用的なバッチ設定で扱うように設計されたサブセット選択アルゴリズムを提案する。
我々のアルゴリズムであるIWeSは、各サンプルに割り当てられたサンプリング確率が、以前選択されたバッチで訓練されたモデルのエントロピーに基づいて、重要サンプリングによってサンプルを選択する。
論文 参考訳(メタデータ) (2023-01-28T02:07:31Z) - Combining Self-labeling with Selective Sampling [2.0305676256390934]
この研究は、選択的サンプリングシナリオにおける自己ラベル技術とアクティブラーニングを組み合わせたものである。
選択したクラスに対してバイアスを課すことにより,自己ラベルの適用がパフォーマンスに悪影響を及ぼすことを示す。
提案手法は,現在の選択的サンプリング手法と一致し,より良い結果が得られる。
論文 参考訳(メタデータ) (2023-01-11T11:58:45Z) - Cost-Effective Online Contextual Model Selection [14.094350329970537]
我々は,このタスクを,学習者が文脈とともにラベルのないデータポイントを受信する,オンラインコンテキストアクティブモデル選択問題として定式化する。
目標は、ラベルの過剰な量を得ることなく、任意のコンテキストに対して最良のモデルを出力することである。
本稿では,適応モデル選択のためのポリシークラスに定義された新しい不確実性サンプリングクエリ基準に依存する,文脈型アクティブモデル選択アルゴリズム(CAMS)を提案する。
論文 参考訳(メタデータ) (2022-07-13T08:22:22Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - Message Passing Adaptive Resonance Theory for Online Active
Semi-supervised Learning [30.19936050747407]
オンラインのアクティブ半教師あり学習のためのメッセージパッシング適応共振理論(MPART)を提案する。
MPARTはラベルのないデータのクラスを推論し、トポロジグラフ上のノード間のメッセージパッシングを通じて情報的および代表的サンプルを選択する。
我々は,MPARTがオンラインのアクティブ学習環境において,競合モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-02T14:14:42Z) - On Deep Unsupervised Active Learning [41.579343330613675]
教師なしアクティブラーニングは、教師なしアノテートのための教師なしセッティングで代表サンプルを選択することを目的としている。
本稿では,教師なしアクティブラーニングのための新しいディープニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-28T02:52:21Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。