論文の概要: Robust Optimization as Data Augmentation for Large-scale Graphs
- arxiv url: http://arxiv.org/abs/2010.09891v3
- Date: Tue, 29 Mar 2022 07:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 21:04:20.782425
- Title: Robust Optimization as Data Augmentation for Large-scale Graphs
- Title(参考訳): 大規模グラフのためのデータ拡張としてのロバスト最適化
- Authors: Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard
Ghanem, Gavin Taylor, Tom Goldstein
- Abstract要約: 学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
- 参考スコア(独自算出の注目度): 117.2376815614148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation helps neural networks generalize better by enlarging the
training set, but it remains an open question how to effectively augment graph
data to enhance the performance of GNNs (Graph Neural Networks). While most
existing graph regularizers focus on manipulating graph topological structures
by adding/removing edges, we offer a method to augment node features for better
performance. We propose FLAG (Free Large-scale Adversarial Augmentation on
Graphs), which iteratively augments node features with gradient-based
adversarial perturbations during training. By making the model invariant to
small fluctuations in input data, our method helps models generalize to
out-of-distribution samples and boosts model performance at test time. FLAG is
a general-purpose approach for graph data, which universally works in node
classification, link prediction, and graph classification tasks. FLAG is also
highly flexible and scalable, and is deployable with arbitrary GNN backbones
and large-scale datasets. We demonstrate the efficacy and stability of our
method through extensive experiments and ablation studies. We also provide
intuitive observations for a deeper understanding of our method.
- Abstract(参考訳): データ拡張は、トレーニングセットを拡大することで、ニューラルネットワークの一般化に役立つが、グラフデータを効果的に拡張して、GNN(Graph Neural Networks)のパフォーマンスを向上する方法は、未解決のままである。
既存のグラフレギュレータのほとんどはエッジの追加や削除によってグラフトポロジ構造を操作することに重点を置いているが、パフォーマンスを向上させるためにノード機能を拡張する方法を提供する。
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
入力データの小さなゆらぎにモデルを不変にすることで,本手法は分布外サンプルへの一般化を支援し,テスト時のモデル性能を向上させる。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
FLAGは柔軟でスケーラブルで、任意のGNNバックボーンと大規模データセットでデプロイ可能である。
本手法の有効性と安定性を広範な実験とアブレーションにより実証する。
また,本手法のより深い理解のために直観的な観察を行う。
関連論文リスト
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning [34.23920789327245]
本稿では,グラフのキー部分を保存するために,コントラスト的な拡張過程を導出するENGAGEを提案する。
また、構造情報と特徴情報を摂動するグラフ上に2つのデータ拡張スキームを設計する。
論文 参考訳(メタデータ) (2023-07-03T14:33:14Z) - Graph Property Prediction on Open Graph Benchmark: A Winning Solution by
Graph Neural Architecture Search [37.89305885538052]
PAS(Pooling Architecture Search)を導入してグラフ分類タスクのためのグラフニューラルネットワークフレームワークを設計する。
本稿では,GNNトポロジ設計手法であるF2GNNに基づいて改良を行い,グラフ特性予測タスクにおけるモデルの性能をさらに向上させる。
NAS法は,複数のタスクに対して高い一般化能力を有し,グラフ特性予測タスクの処理における本手法の利点が証明された。
論文 参考訳(メタデータ) (2022-07-13T08:17:48Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
グラフニューラルネットワーク(GNN)は、グラフ構造情報を利用してネットワークデータから表現をモデル化する処理アーキテクチャである。
彼らの成功にもかかわらず、GNNは限られた訓練データから得られる準最適一般化性能に悩まされている。
本稿では、一般化性能を改善し、堅牢なGNNモデルを学習するためのトポロジ適応エッジドロップ法を提案する。
論文 参考訳(メタデータ) (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
半教師付きノード分類を改善する文脈において,グラフニューラルネットワーク(GNN)のグラフデータ拡張について検討した。
本研究は,階層内エッジの促進とグラフ構造におけるクラス間エッジの復号化のために,クラス-ホモフィル構造を効果的に符号化できることを示唆する。
我々の主な貢献はGAugグラフデータ拡張フレームワークを導入し、これらの洞察を活用してエッジ予測によるGNNベースのノード分類の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-11T21:17:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。