LT-GAN: Self-Supervised GAN with Latent Transformation Detection
- URL: http://arxiv.org/abs/2010.09893v1
- Date: Mon, 19 Oct 2020 22:09:45 GMT
- Title: LT-GAN: Self-Supervised GAN with Latent Transformation Detection
- Authors: Parth Patel, Nupur Kumari, Mayank Singh, Balaji Krishnamurthy
- Abstract summary: We propose a self-supervised approach (LT-GAN) to improve the generation quality and diversity of images.
We experimentally demonstrate that our proposed LT-GAN can be effectively combined with other state-of-the-art training techniques for added benefits.
- Score: 10.405721171353195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) coupled with self-supervised tasks
have shown promising results in unconditional and semi-supervised image
generation. We propose a self-supervised approach (LT-GAN) to improve the
generation quality and diversity of images by estimating the GAN-induced
transformation (i.e. transformation induced in the generated images by
perturbing the latent space of generator). Specifically, given two pairs of
images where each pair comprises of a generated image and its transformed
version, the self-supervision task aims to identify whether the latent
transformation applied in the given pair is same to that of the other pair.
Hence, this auxiliary loss encourages the generator to produce images that are
distinguishable by the auxiliary network, which in turn promotes the synthesis
of semantically consistent images with respect to latent transformations. We
show the efficacy of this pretext task by improving the image generation
quality in terms of FID on state-of-the-art models for both conditional and
unconditional settings on CIFAR-10, CelebA-HQ and ImageNet datasets. Moreover,
we empirically show that LT-GAN helps in improving controlled image editing for
CelebA-HQ and ImageNet over baseline models. We experimentally demonstrate that
our proposed LT self-supervision task can be effectively combined with other
state-of-the-art training techniques for added benefits. Consequently, we show
that our approach achieves the new state-of-the-art FID score of 9.8 on
conditional CIFAR-10 image generation.
Related papers
- StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT) is a pure non-autoregressive(NAR) generative model.
Our experiments demonstrate that StraIT significantly improves NAR generation and out-performs existing DMs and AR methods.
arXiv Detail & Related papers (2023-03-01T18:59:33Z) - TcGAN: Semantic-Aware and Structure-Preserved GANs with Individual
Vision Transformer for Fast Arbitrary One-Shot Image Generation [11.207512995742999]
One-shot image generation (OSG) with generative adversarial networks that learn from the internal patches of a given image has attracted world wide attention.
We propose a novel structure-preserved method TcGAN with individual vision transformer to overcome the shortcomings of the existing one-shot image generation methods.
arXiv Detail & Related papers (2023-02-16T03:05:59Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z) - Evolving GAN Formulations for Higher Quality Image Synthesis [15.861807854144228]
Generative Adversarial Networks (GANs) have extended deep learning to complex generation and translation tasks.
GANs are notoriously difficult to train: Mode collapse and other instabilities in the training process often degrade the quality of the generated results.
This paper presents a new technique called TaylorGAN for improving GANs by discovering customized loss functions for each of its two networks.
arXiv Detail & Related papers (2021-02-17T05:11:21Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - You Only Need Adversarial Supervision for Semantic Image Synthesis [84.83711654797342]
We propose a novel, simplified GAN model, which needs only adversarial supervision to achieve high quality results.
We show that images synthesized by our model are more diverse and follow the color and texture of real images more closely.
arXiv Detail & Related papers (2020-12-08T23:00:48Z) - Group Equivariant Generative Adversarial Networks [7.734726150561089]
In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks.
Group-convariants have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator.
arXiv Detail & Related papers (2020-05-04T17:38:49Z) - Pixel-wise Conditioned Generative Adversarial Networks for Image
Synthesis and Completion [3.8807073304999355]
Generative Adversarial Networks (GANs) have proven successful for unsupervised image generation.
We investigate the effectiveness of conditioning GANs when very few pixel values are provided.
We propose a modelling framework which results in adding an explicit cost term to the GAN objective function to enforce pixel-wise conditioning.
arXiv Detail & Related papers (2020-02-04T13:49:15Z) - Toward a Controllable Disentanglement Network [22.968760397814993]
This paper addresses two crucial problems of learning disentangled image representations, namely controlling the degree of disentanglement during image editing, and balancing the disentanglement strength and the reconstruction quality.
By exploring the real-valued space of the soft target representation, we are able to synthesize novel images with the designated properties.
arXiv Detail & Related papers (2020-01-22T16:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.