Vision Foundation Models as Effective Visual Tokenizers for Autoregressive Image Generation
- URL: http://arxiv.org/abs/2507.08441v1
- Date: Fri, 11 Jul 2025 09:32:45 GMT
- Title: Vision Foundation Models as Effective Visual Tokenizers for Autoregressive Image Generation
- Authors: Anlin Zheng, Xin Wen, Xuanyang Zhang, Chuofan Ma, Tiancai Wang, Gang Yu, Xiangyu Zhang, Xiaojuan Qi,
- Abstract summary: We build an image tokenizer directly atop pre-trained vision foundation models.<n>Our proposed image tokenizer, VFMTok, achieves substantial improvements in image reconstruction and generation quality.<n>It further boosts autoregressive (AR) generation -- achieving a gFID of 2.07 on ImageNet benchmarks.
- Score: 66.73899356886652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging the powerful representations of pre-trained vision foundation models -- traditionally used for visual comprehension -- we explore a novel direction: building an image tokenizer directly atop such models, a largely underexplored area. Specifically, we employ a frozen vision foundation model as the encoder of our tokenizer. To enhance its effectiveness, we introduce two key components: (1) a region-adaptive quantization framework that reduces redundancy in the pre-trained features on regular 2D grids, and (2) a semantic reconstruction objective that aligns the tokenizer's outputs with the foundation model's representations to preserve semantic fidelity. Based on these designs, our proposed image tokenizer, VFMTok, achieves substantial improvements in image reconstruction and generation quality, while also enhancing token efficiency. It further boosts autoregressive (AR) generation -- achieving a gFID of 2.07 on ImageNet benchmarks, while accelerating model convergence by three times, and enabling high-fidelity class-conditional synthesis without the need for classifier-free guidance (CFG). The code will be released publicly to benefit the community.
Related papers
- Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency [57.961869351897384]
We propose a framework based on cross-modal semantic consistency for efficient image clustering.<n>Our framework first builds a strong foundation via Cross-Modal Semantic Consistency.<n>In the first stage, we train lightweight clustering heads to align with the rich semantics of the pre-trained model.<n>In the second stage, we introduce a Self-Enhanced fine-tuning strategy.
arXiv Detail & Related papers (2025-08-02T08:12:57Z) - End-to-End Vision Tokenizer Tuning [73.3065542220568]
The vision tokenizer optimized for low-level reconstruction is to downstream tasks requiring varied representations and semantics.<n>The loss of the vision tokenization can be the representation bottleneck for target tasks.<n>We propose ETT, an end-to-end vision tokenizer tuning approach that enables joint optimization between vision tokenization and target autoregressive tasks.
arXiv Detail & Related papers (2025-05-15T17:59:39Z) - Boosting Generative Image Modeling via Joint Image-Feature Synthesis [10.32324138962724]
We introduce a novel generative image modeling framework that seamlessly bridges the gap by leveraging a diffusion model to jointly model low-level image latents.<n>Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise.<n>By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance.
arXiv Detail & Related papers (2025-04-22T17:41:42Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.<n>We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step [77.86514804787622]
Chain-of-Thought (CoT) reasoning has been extensively explored in large models to tackle complex understanding tasks.<n>We provide the first comprehensive investigation of the potential of CoT reasoning to enhance autoregressive image generation.<n>We propose the Potential Assessment Reward Model (PARM) and PARM++, specialized for autoregressive image generation.
arXiv Detail & Related papers (2025-01-23T18:59:43Z) - Locally-Focused Face Representation for Sketch-to-Image Generation Using Noise-Induced Refinement [1.7409266903306055]
This paper presents a novel deep-learning framework that significantly enhances the transformation of rudimentary face sketches into high-fidelity colour images.<n>Our approach effectively captures and enhances critical facial features through a block attention mechanism within an encoder-decoder architecture.<n>The model sets a new state-of-the-art in sketch-to-image generation, can generalize across sketch types, and offers a robust solution for applications such as criminal identification in law enforcement.
arXiv Detail & Related papers (2024-11-28T09:12:56Z) - High-Resolution Image Synthesis via Next-Token Prediction [19.97037318862443]
We introduce textbfD-JEPA$cdot$T2I, an autoregressive model based on continuous tokens to generate high-quality, photorealistic images at arbitrary resolutions, up to 4K.<n>For the first time, we achieve state-of-the-art high-resolution image synthesis via next-token prediction.
arXiv Detail & Related papers (2024-11-22T09:08:58Z) - Efficient-VQGAN: Towards High-Resolution Image Generation with Efficient
Vision Transformers [41.78970081787674]
We propose a more efficient two-stage framework for high-resolution image generation.
We employ a local attention-based quantization model instead of the global attention mechanism used in previous methods.
This approach results in faster generation speed, higher generation fidelity, and improved resolution.
arXiv Detail & Related papers (2023-10-09T04:38:52Z) - LeftRefill: Filling Right Canvas based on Left Reference through
Generalized Text-to-Image Diffusion Model [55.20469538848806]
LeftRefill is an innovative approach to harness large Text-to-Image (T2I) diffusion models for reference-guided image synthesis.
This paper introduces LeftRefill, an innovative approach to efficiently harness large Text-to-Image (T2I) diffusion models for reference-guided image synthesis.
arXiv Detail & Related papers (2023-05-19T10:29:42Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z) - Towards Coding for Human and Machine Vision: A Scalable Image Coding
Approach [104.02201472370801]
We come up with a novel image coding framework by leveraging both the compressive and the generative models.
By introducing advanced generative models, we train a flexible network to reconstruct images from compact feature representations and the reference pixels.
Experimental results demonstrate the superiority of our framework in both human visual quality and facial landmark detection.
arXiv Detail & Related papers (2020-01-09T10:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.