論文の概要: ColloQL: Robust Cross-Domain Text-to-SQL Over Search Queries
- arxiv url: http://arxiv.org/abs/2010.09927v1
- Date: Mon, 19 Oct 2020 23:53:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 20:48:14.377017
- Title: ColloQL: Robust Cross-Domain Text-to-SQL Over Search Queries
- Title(参考訳): ColloQL: 検索クエリによるクロスドメインテキストからSQLへのロバスト
- Authors: Karthik Radhakrishnan, Arvind Srikantan, Xi Victoria Lin
- Abstract要約: データ拡張技術とサンプリングベースコンテンツ対応BERTモデル(ColloQL)を紹介する。
ColloQLは、Wikilogicalデータセット上で84.9%(実行)と90.7%(実行)の精度を達成する。
- 参考スコア(独自算出の注目度): 10.273545005890496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Translating natural language utterances to executable queries is a helpful
technique in making the vast amount of data stored in relational databases
accessible to a wider range of non-tech-savvy end users. Prior work in this
area has largely focused on textual input that is linguistically correct and
semantically unambiguous. However, real-world user queries are often succinct,
colloquial, and noisy, resembling the input of a search engine. In this work,
we introduce data augmentation techniques and a sampling-based content-aware
BERT model (ColloQL) to achieve robust text-to-SQL modeling over natural
language search (NLS) questions. Due to the lack of evaluation data, we curate
a new dataset of NLS questions and demonstrate the efficacy of our approach.
ColloQL's superior performance extends to well-formed text, achieving 84.9%
(logical) and 90.7% (execution) accuracy on the WikiSQL dataset, making it, to
the best of our knowledge, the highest performing model that does not use
execution guided decoding.
- Abstract(参考訳): 自然言語発話を実行可能なクエリに変換することは、リレーショナルデータベースに格納された膨大なデータを、より幅広い非技術に精通したエンドユーザーにアクセスさせるのに役立つテクニックである。
この分野の先行研究は、言語的に正確で意味的に曖昧なテキスト入力に重点を置いてきた。
しかし、現実世界のユーザクエリは、検索エンジンの入力に類似した簡潔で口語的でノイズが多い。
本研究では,自然言語検索(NLS)問題に対する堅牢なテキスト-SQLモデリングを実現するために,データ拡張手法とサンプリングベースコンテンツ対応BERTモデル(ColloQL)を紹介する。
評価データがないため、NLS質問の新しいデータセットをキュレートし、アプローチの有効性を実証する。
ColloQLの優れたパフォーマンスは、十分に整ったテキストにまで拡張され、WikiSQLデータセット上で84.9%(論理)と90.7%(実行)の精度を達成した。
関連論文リスト
- Leveraging LLMs to Enable Natural Language Search on Go-to-market Platforms [0.23301643766310368]
販売者向けのZoominfo製品向けのソリューションの実装と評価を行い、自然言語による大規模言語モデルの実現を促す。
中間検索フィールドは、構文エラーの除去など、クエリ毎に多くの利点を提供する。
提案手法の有効性を実証するために, クローズド, オープンソース, 微調整 LLM モデルを用いた総合実験を行った。
論文 参考訳(メタデータ) (2024-11-07T03:58:38Z) - Text2SQL is Not Enough: Unifying AI and Databases with TAG [47.45480855418987]
Table-Augmented Generation (TAG) は、データベース上の自然言語の質問に答えるパラダイムである。
我々は、TAG問題を研究するためのベンチマークを開発し、標準手法がクエリの20%以上を正しく答えることを発見した。
論文 参考訳(メタデータ) (2024-08-27T00:50:14Z) - RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering [11.214912072391108]
現実世界のデータセットは、大きな属性と複雑な値の配列を特徴とすることが多い。
従来の手法ではデータセットのサイズと複雑さをLarge Language Modelsに完全にリレーすることはできません。
入力テーブル上でFTS(Full-Text Search)を利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T13:13:06Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL [0.0]
検索拡張世代(RAG)フレームワークでOpenAIのGPT-4モデルを利用する。
ビジネスコンテキストドキュメントはビジネスコンテキストドキュメントでリッチ化され、NLQを構造化クエリ言語クエリに変換する。
複雑性の高いクエリが除外された場合、パフォーマンスは最大85%向上した。
論文 参考訳(メタデータ) (2024-06-15T17:07:31Z) - NL2KQL: From Natural Language to Kusto Query [1.7931930942711818]
NL2KQLは、大規模言語モデル(LLM)を使用して自然言語クエリ(NLQ)をKusto Query Language(KQL)クエリに変換する革新的なフレームワークである。
NL2KQLのパフォーマンスを検証するために、オンライン(クエリ実行に基づく)とオフライン(クエリ解析に基づく)メトリクスの配列を使用します。
論文 参考訳(メタデータ) (2024-04-03T01:09:41Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for
Cross-lingual Text-to-SQL Semantic Parsing [70.40401197026925]
大規模言語モデルを用いたインコンテキスト学習は、最近セマンティック解析タスクの驚くべき結果を示している。
この研究は、あるクエリに対して関連する英語の例を検索する学習を行うXRICLフレームワークを導入している。
また、大規模言語モデルの翻訳プロセスを容易にするために、対象言語に対するグローバルな翻訳例も含んでいる。
論文 参考訳(メタデータ) (2022-10-25T01:33:49Z) - Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding [84.04706075621013]
トークンレベルのきめ細かいクエリ理解に基づく汎用的モジュール型ニューラルネットワーク解析フレームワークを提案する。
我々のフレームワークは、名前付きエンティティ認識(NER)、ニューラルエンティティリンカ(NEL)、ニューラルエンティティリンカ(NSP)の3つのモジュールから構成されている。
論文 参考訳(メタデータ) (2022-09-28T21:00:30Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - SPARQLing Database Queries from Intermediate Question Decompositions [7.475027071883912]
自然言語の質問をデータベースクエリに変換するために、ほとんどのアプローチは、完全に注釈付けされたトレーニングセットに依存している。
データベースの中間問題表現を基盤として,この負担を軽減する。
我々のパイプラインは、自然言語質問を中間表現に変換するセマンティックと、訓練不能なトランスパイラをQLSPARクエリ言語に変換する2つの部分から構成される。
論文 参考訳(メタデータ) (2021-09-13T17:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。