論文の概要: POND: Pessimistic-Optimistic oNline Dispatching
- arxiv url: http://arxiv.org/abs/2010.09995v2
- Date: Tue, 11 May 2021 11:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:48:54.941465
- Title: POND: Pessimistic-Optimistic oNline Dispatching
- Title(参考訳): POND: 悲観的光学的oNline分散
- Authors: Xin Liu, Bin Li, Pengyi Shi, Lei Ying
- Abstract要約: 我々はPONDという新しいオンラインディスパッチアルゴリズムを提案する。
合成および実データを用いた実験により、PONDは最小限の制約違反を伴って低後悔を達成できることが示された。
- 参考スコア(独自算出の注目度): 16.10465470594695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers constrained online dispatching with unknown arrival,
reward and constraint distributions. We propose a novel online dispatching
algorithm, named POND, standing for Pessimistic-Optimistic oNline Dispatching,
which achieves $O(\sqrt{T})$ regret and $O(1)$ constraint violation. Both
bounds are sharp. Our experiments on synthetic and real datasets show that POND
achieves low regret with minimal constraint violations.
- Abstract(参考訳): 本稿では,未知の到着,報酬,制約分布を持つ制約付きオンラインディスパッチについて考察する。
我々はPONDという新しいオンラインディスパッチアルゴリズムを提案し、Pessimistic-Optimistic oNline Dispatching(O(\sqrt{T})$ regretと$O(1)$制約違反を実現する。
両方の境界は鋭い。
合成データと実データを用いた実験の結果,ポンドは最小限の制約違反で低い後悔を達成できた。
関連論文リスト
- Optimistic Safety for Online Convex Optimization with Unknown Linear Constraints [31.526232903811533]
我々はOCO(Optimistically Safe OCO)と呼ぶアルゴリズムを導入し、そのアルゴリズムが$tildeO(sqrtT)$ regretと制約違反がないことを示す。
静的線形制約の場合、これは同じ仮定の下で、以前の最もよく知られた $tildeO(T2/3)$ regret よりも改善される。
時間的制約の場合、当社の作業は、$O(sqrtT)$ regretと$O(sqrtT)$ cumulative violationを示す既存の結果を補完します。
論文 参考訳(メタデータ) (2024-03-09T04:01:39Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
線形混合遷移カーネルを用いた最短経路(SSP)問題について検討する。
エージェントは繰り返し環境と対話し、累積コストを最小化しながら特定の目標状態に到達する。
既存の作業は、イテレーションコスト関数の厳密な下限や、最適ポリシーに対する期待長の上限を仮定することが多い。
論文 参考訳(メタデータ) (2024-02-14T07:52:00Z) - Online Convex Optimization with Stochastic Constraints: Zero Constraint
Violation and Bandit Feedback [0.0]
本稿では,O(sqrtT)$期待後悔とゼロ制約違反を保証できるドリフト・プラス・ペナルティアルゴリズムの変種を提案する。
我々のアルゴリズムは、バニラドリフト・プラス・ペナルティ法とは対照的に、時間地平線の長さが$T$である。
論文 参考訳(メタデータ) (2023-01-26T18:04:26Z) - Rectified Pessimistic-Optimistic Learning for Stochastic Continuum-armed
Bandit with Constraints [4.879346089164413]
ブラックボックスの報酬関数 $f(x)$ を、連続空間上のブラックボックス制約関数 $g(x)leq 0$ に最適化する。
本稿では,楽観的かつ悲観的なGPバンディット学習を取り入れたペナルティベース手法であるRectified Pessimistic-Optimistic Learning framework (RPOL)を提案する。
論文 参考訳(メタデータ) (2022-11-27T04:28:16Z) - Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes [99.26864533035454]
半可観測マルコフ決定過程におけるオフライン強化学習(RL)について検討する。
本稿では,UnderlineProxy変数 underlinePessimistic UnderlinePolicy UnderlineOptimization (textttP3O)アルゴリズムを提案する。
textttP3Oは、確立されたデータセットを持つPOMDPのための証明可能な最初のオフラインRLアルゴリズムである。
論文 参考訳(メタデータ) (2022-05-26T19:13:55Z) - Online Nonsubmodular Minimization with Delayed Costs: From Full
Information to Bandit Feedback [98.7678704343537]
我々は,オンラインおよび近似的オンライン帯域勾配勾配アルゴリズムのいくつかの変種に対する後悔の保証を,特別な構造を持つ非部分モジュラ関数のクラスに焦点をあてる。
我々は,決定の選択と帰属費用の受け取りの遅れが無拘束である場合でも,エージェントの完全な情報と盗賊のフィードバック設定に対する後悔の限界を導出する。
論文 参考訳(メタデータ) (2022-05-15T08:27:12Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - Online Allocation with Two-sided Resource Constraints [44.5635910908944]
我々は,要求が順次到着する,リソース制約の低いオンラインアロケーション問題を考える。
提案手法では, リクエスト全体を知るオフライン問題に対して, 1-O (fracepsilonalpha-epsilon)$-competitive ratioを求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-28T02:21:06Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z) - Thompson Sampling for Linearly Constrained Bandits [18.477962150017095]
我々はLinConTSについて述べる。LinConTSは、各ラウンドで報酬を得る確率に線形制約を課すバンディットのアルゴリズムである。
また,LinConTSでは,過度な制約違反と累積的制約違反はO(log T)で上限づけられていることを示す。
論文 参考訳(メタデータ) (2020-04-20T13:06:35Z) - A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization [60.90222082871258]
本稿では,制約集合上の線形最小化オラクル(LMO)を用いて,制約付き自己調和最小化問題のクラスをカラフルに解く方法を示す。
L-smoothの場合、我々の手法のLMO呼び出し数はFrank-Wolfe法とほぼ同じであることを示す。
論文 参考訳(メタデータ) (2020-02-17T15:28:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。