Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning
- URL: http://arxiv.org/abs/2010.10029v2
- Date: Thu, 6 Jan 2022 19:06:45 GMT
- Title: Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning
- Authors: Tianyu Li, Doina Precup, Guillaume Rabusseau
- Abstract summary: We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
- Score: 58.14930566993063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present connections between three models used in different
research fields: weighted finite automata~(WFA) from formal languages and
linguistics, recurrent neural networks used in machine learning, and tensor
networks which encompasses a set of optimization techniques for high-order
tensors used in quantum physics and numerical analysis. We first present an
intrinsic relation between WFA and the tensor train decomposition, a particular
form of tensor network. This relation allows us to exhibit a novel low rank
structure of the Hankel matrix of a function computed by a WFA and to design an
efficient spectral learning algorithm leveraging this structure to scale the
algorithm up to very large Hankel matrices.We then unravel a fundamental
connection between WFA and second-orderrecurrent neural networks~(2-RNN): in
the case of sequences of discrete symbols, WFA and 2-RNN with linear
activationfunctions are expressively equivalent. Leveraging this equivalence
result combined with the classical spectral learning algorithm for weighted
automata, we introduce the first provable learning algorithm for linear 2-RNN
defined over sequences of continuous input vectors.This algorithm relies on
estimating low rank sub-blocks of the Hankel tensor, from which the parameters
of a linear 2-RNN can be provably recovered. The performances of the proposed
learning algorithm are assessed in a simulation study on both synthetic and
real-world data.
Related papers
- Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks [0.0]
This paper introduces the front-propagation algorithm, a novel AI technique designed to elucidate the decision-making logic of deep neural networks.
Unlike other popular explainability algorithms such as Integrated Gradients or Shapley Values, the proposed algorithm is able to extract an accurate and consistent linear function explanation of the network.
We demonstrate its efficacy in providing accurate linear functions with three different neural network architectures trained on publicly available benchmark datasets.
arXiv Detail & Related papers (2024-05-25T14:50:23Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
We propose an integration of tensor networks (TN) into deep neural networks (NNs)
This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space.
We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.
arXiv Detail & Related papers (2022-11-26T20:24:36Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Tensor-based framework for training flexible neural networks [9.176056742068813]
We propose a new learning algorithm which solves a constrained coupled matrix-tensor factorization (CMTF) problem.
The proposed algorithm can handle different bases decomposition.
The goal of this method is to compress large pretrained NN models, by replacing tensorworks, em i.e., one or multiple layers of the original network, by a new flexible layer.
arXiv Detail & Related papers (2021-06-25T10:26:48Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.