Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks
- URL: http://arxiv.org/abs/2405.16259v1
- Date: Sat, 25 May 2024 14:50:23 GMT
- Title: Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks
- Authors: Javier ViaƱa,
- Abstract summary: This paper introduces the front-propagation algorithm, a novel AI technique designed to elucidate the decision-making logic of deep neural networks.
Unlike other popular explainability algorithms such as Integrated Gradients or Shapley Values, the proposed algorithm is able to extract an accurate and consistent linear function explanation of the network.
We demonstrate its efficacy in providing accurate linear functions with three different neural network architectures trained on publicly available benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the front-propagation algorithm, a novel eXplainable AI (XAI) technique designed to elucidate the decision-making logic of deep neural networks. Unlike other popular explainability algorithms such as Integrated Gradients or Shapley Values, the proposed algorithm is able to extract an accurate and consistent linear function explanation of the network in a single forward pass of the trained model. This nuance sets apart the time complexity of the front-propagation as it could be running real-time and in parallel with deployed models. We packaged this algorithm in a software called $\texttt{front-prop}$ and we demonstrate its efficacy in providing accurate linear functions with three different neural network architectures trained on publicly available benchmark datasets.
Related papers
- Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
We present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms.
Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets.
arXiv Detail & Related papers (2024-05-06T09:14:58Z) - Discrete Neural Algorithmic Reasoning [18.497863598167257]
We propose to force neural reasoners to maintain the execution trajectory as a combination of finite predefined states.
trained with supervision on the algorithm's state transitions, such models are able to perfectly align with the original algorithm.
arXiv Detail & Related papers (2024-02-18T16:03:04Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Distillation of Weighted Automata from Recurrent Neural Networks using a
Spectral Approach [0.0]
This paper is an attempt to bridge the gap between deep learning and grammatical inference.
It provides an algorithm to extract a formal language from any recurrent neural network trained for language modelling.
arXiv Detail & Related papers (2020-09-28T07:04:15Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches.
Exact probabilistic inference algorithms are typically applied in training and prediction stages of the CRF model.
We propose to employ a parallelizable approximate variational inference algorithm for the CRF model.
arXiv Detail & Related papers (2020-09-17T12:18:43Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.