Neural Approximate Sufficient Statistics for Implicit Models
- URL: http://arxiv.org/abs/2010.10079v2
- Date: Tue, 30 Mar 2021 13:35:14 GMT
- Title: Neural Approximate Sufficient Statistics for Implicit Models
- Authors: Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville,
Zhanxing Zhu
- Abstract summary: We frame the task of constructing sufficient statistics as learning mutual information maximizing representations of the data with the help of deep neural networks.
We apply our approach to both traditional approximate Bayesian computation and recent neural likelihood methods, boosting their performance on a range of tasks.
- Score: 34.44047460667847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the fundamental problem of how to automatically construct summary
statistics for implicit generative models where the evaluation of the
likelihood function is intractable, but sampling data from the model is
possible. The idea is to frame the task of constructing sufficient statistics
as learning mutual information maximizing representations of the data with the
help of deep neural networks. The infomax learning procedure does not need to
estimate any density or density ratio. We apply our approach to both
traditional approximate Bayesian computation and recent neural likelihood
methods, boosting their performance on a range of tasks.
Related papers
- Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
We present a simple approach to incorporate summary information about the predicted probability.
The available summary information is incorporated as augmented data and modeled with a Dirichlet process.
We show how the method can inform the model about task difficulty or class imbalance.
arXiv Detail & Related papers (2022-07-04T07:06:45Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
We propose a novel method for globally amortized Bayesian inference based on invertible neural networks.
BayesFlow incorporates a summary network trained to embed the observed data into maximally informative summary statistics.
We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science and ecology.
arXiv Detail & Related papers (2020-03-13T13:39:31Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.