Lost in Retraining: Roaming the Parameter Space of Exponential Families Under Closed-Loop Learning
- URL: http://arxiv.org/abs/2506.20623v2
- Date: Wed, 09 Jul 2025 08:24:09 GMT
- Title: Lost in Retraining: Roaming the Parameter Space of Exponential Families Under Closed-Loop Learning
- Authors: Fariba Jangjoo, Matteo Marsili, Yasser Roudi,
- Abstract summary: We study closed-loop learning for models that belong to exponential families.<n>We show that maximum likelihood of the parameters endows sufficient statistics with the martingale property.<n>We show that this outcome may be prevented if the data contains at least one data point generated from a ground truth model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Closed-loop learning is the process of repeatedly estimating a model from data generated from the model itself. It is receiving great attention due to the possibility that large neural network models may, in the future, be primarily trained with data generated by artificial neural networks themselves. We study this process for models that belong to exponential families, deriving equations of motions that govern the dynamics of the parameters. We show that maximum likelihood estimation of the parameters endows sufficient statistics with the martingale property and that as a result the process converges to absorbing states that amplify initial biases present in the data. However, we show that this outcome may be prevented if the data contains at least one data point generated from a ground truth model, by relying on maximum a posteriori estimation or by introducing regularisation.
Related papers
- Universal pre-training by iterated random computation [0.0]
We show that synthetically generated data can be used to pre-train a model before the data is seen.<n>We extend earlier results to real-world data, and show that finetuning a model after pre-training offers faster convergence and better generalization.
arXiv Detail & Related papers (2025-06-24T23:36:35Z) - A Probabilistic Perspective on Model Collapse [9.087950471621653]
This paper aims to characterize the conditions under which model collapse occurs and, crucially, how it can be mitigated.<n>Under mild conditions, we rigorously show that progressively increasing the sample size at each training step is necessary to prevent model collapse.<n>We also investigate the probability that training on synthetic data yields models that outperform those trained solely on real data.
arXiv Detail & Related papers (2025-05-20T05:25:29Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
We construct a neural likelihood approximation that can be trained using unconditional simulation of the underlying model.
We demonstrate our method by performing inference on a number of ecological and epidemiological models.
arXiv Detail & Related papers (2023-10-19T07:51:39Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - BayesFlow: Learning complex stochastic models with invertible neural
networks [3.1498833540989413]
We propose a novel method for globally amortized Bayesian inference based on invertible neural networks.
BayesFlow incorporates a summary network trained to embed the observed data into maximally informative summary statistics.
We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science and ecology.
arXiv Detail & Related papers (2020-03-13T13:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.